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ABSTRACT: The multi-source, multi-sensor, multi-spatial, multi-temporal satellite products are widely available 

over the past few years. Due to the feasibility to incorporate both high spatial resolution and frequent temporal 

coverage, spatiotemporal fusion has attracted a lot of attention in a variety of applications. Spatiotemporal image 

fusion can prove to be a cost-effective, efficient, and feasible alternative to construct a time series of high spatial and 

temporal resolution data. In comparison to the raw images, the fused image should contain enhanced spatial and 

spectral information. Identifying suitable context-specific fusion methods depends on the quality of the spatiotemporal 

fused image. In the absence of reference images in context-specific applications, the fused images are directly 

correlated to the quality of the pair of input spatiotemporal images. There are qualitative and quantitative image 

quality metrics. Visual comparison between the raw input images and the fused image is done in qualitative analysis 

for evaluating the performance of the fusion result. Quantitative analysis has two different variations where it 

evaluates the performance of the fused image in the presence and absence of a reference image. The variety of quality 

issues of the spatiotemporal fused images such as redundant information, and comparability across various study areas 

are not completely addressed by commonly used evaluation metrics. A composition of metrics that addresses the 

above spatiotemporal aspects of fused images is a viable solution to overcome this problem. In the present study, we 

use a reconstruction-based fusion method known as the Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM) using Landsat-8 and Sentinel-2 surface reflectance. The fusion result’s quality is assessed by using four 

complete reference image quality assessment metrics as Local Binary Patterns (LBP), Root-Mean-Square Error 

(RMSE), Edge, and Mean Error (ME) along with a no-reference image quality evaluation metric called 

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE). These metrics reduce information redundancy and 

exhibit computational simplicity in addition to quantifying the spectral and spatial information in the fused images 

and also significantly improve the correlation of the fusion results with the subjective quality scores. 
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1. INTRODUCTION

The increasing availability of satellite products with different spatial, temporal, and spectral resolutions provides 

enormous amounts of remote sensing big data. To conduct remote sensing research in a variety of heterogeneous 

areas, including fragmented urban areas and agrarian regions, the acquisition of time-series satellite images with high 

spatial and temporal resolution is required (Tang et al., 2020; Zeng et al., 2020). The high spatial resolution of 

satellite-based remote sensors has helped earth observation at fine levels. The trade-off that exists between the 

revisiting frequency and swath width of these satellite remote sensors limits the acquisition of images at both high 

spatial and temporal resolutions simultaneously (Belgiu & Stein, 2019; X. Zhu et al., 2018).  

Monitoring the Earth’s surface at fine spatial and temporal scales using spatiotemporal fusion provides great potential 

over individual satellite sensor imagery (Ghamisi et al., 2019). Spatiotemporal fusion is used to fuse imageries from 

different satellite sensors with similar spectral band specifications and the resulting synthetic time series obtained will 

have an integrated temporal resolution from the two satellite sensors and finer spatial resolution of the two satellite 

sensors. Both the fine and coarse satellite images should be atmospherically and geometrically corrected before 

applying the fusion method.  The quality assessment of the fusion result is important to determine the appropriate 

fusion method for the specific application. 

In general, Spatiotemporal image fusion requires at least three input images, i.e., a pair of fine and coarse resolution 

images on the reference date and a coarse resolution image on the target date to generate a synthesized fine resolution 

image on the target date. In case the temporal coverage of the different satellite sensors is barely overlapped, then the 

fusion becomes nearly impossible (Wu et al., 2020). Fusion of imagery from both Landsat-8 Operational Land Imager 

(OLI) and Sentinal-2 Multi-Spectral Instrument (MSI) generates a synthetic time series of 10m spatial resolution at a 

temporal frequency of 2-3 days (Q. Wang et al., 2017). Due to the long revisit cycle of Landsat which is 16 days, it 

is often difficult to get temporally matching imagery with respect to the collected reference Sentinal-2 imagery. Even 

though matching image pairs can be obtained during the extended timespan between both the reference and the target 

dates, the fusion result gets degraded (Cheng et al., 2017). 
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While evaluating the quality of an image fusion, two aspects may have an impact on the results: (a) the selection of 

quantitative indicators (metrics) when performing a quantitative assessment, and (b) the display conditions of the 

images when performing a qualitative (visual) evaluation. In qualitative assessment, when the comparison is not 

carried out under the same visualization conditions, such as when the images are stretched and displayed, the 

comparison won't create accurate results. An original MS image, for instance, often appears black when histogram 

stretching is not applied, and it appears very differently when other stretches are applied. These differences in 

appearances are a result of the conditions of image display and not due to the quality difference. When multiple 

quantitative metrics are selected for the evaluation in a quantitative assessment, different evaluation results are 

possible (Y. Zhang, 2008). 

 

1.1 Motivation 

 

Measuring the similarity between various pixels is used in several spatiotemporal image fusion methods like 

STARFM, FSDAF, ESTARFM, etc., which is useful for correctly predicting high-resolution remote sensing images. 

For instance, the spatiotemporal image fusion methods based on the weight-function use weights to describe the 

correlation between various pixels, while the method based on unmixing uses classification maps to determine the 

category information of each pixel. When filtering out similar pixels, several linear regression techniques represent 

similarity measurement. Three main factors account for the extensive use of the above-mentioned spatiotemporal 

image fusion methods. Firstly, measuring the relationship of pixels is beneficial because the radiation relationship 

between sensors is unstable due to changes in radiation relationships, geographic locations, and other factors (Gao et 

al., 2006). Secondly, a noticeable clustering phenomenon occurs due to the reflectance and temporal variability of the 

reflectance. According to Tobler's first law of geography, everything is connected, but close things are more related, 

especially for spatial dependency (X. Zhu et al., 2018). Third, the complexity of heterogeneous regional texture details 

in remotely sensed images is higher than in the natural image Surface Reflectance task, and the resolution gap between 

multisource satellite image pairs (such as Landsat-MODIS, Landsat-sentinel, etc,.), which are used to evaluate 

spatiotemporal fusion methods, is very large (Liu et al., 2019). The influence of the previous two factors is increased 

by this problem. Consequently, a crucial component of the spatiotemporal fusion method is similarity measurement. 

The remainder of this paper is organized as follows. In Section 2, the related literature is discussed. In Section 3, we 

present the method, test dataset, STARFM python implementation, the image quality assessment metrics, and the 

results. Section 4 consists of the Results and Discussion and the Conclusion is provided in Section 5. 

 

2.  RELATED LITERATURE 

 

Monitoring the rapid surface changes and seasonal vegetation phenology requires high-resolution images in both 

space and time. Even though such fine spatial and high temporal images are been provided by commercial satellites 

(e.g., Planet Labs or RapidEye), acquiring these satellite imageries for our specific applications is very expensive. To 

overcome this challenge, different free sensors provide satellite imagery at a fine spatial scale (e.g., Sentinal-2) and 

high temporal resolution (e.g., Sentinal-3). Spatiotemporal fusion methods help in enhancing the resolution of 

historical satellite images and generating high temporal resolution images cost-effectively for monitoring earth 

observations. 

The are several spatiotemporal fusion models developed over the last two decades and are reviewed by various 

researchers (Belgiu & Stein, 2019; B. Chen et al., 2015; Li et al., 2020; X. Zhu et al., 2018). Integrating heterogeneous 

and complementary data to improve the reliability of the interpretation and enhance the information in the satellite 

images, spatiotemporal fusion is used. If the data are recorded by different sources, complementarity on the same 

observed region is considered if it is using multi-sensors, multi-temporal, multispectral, multi-spatial, or multi-

polarization  (Pohl & van Genderen, n.d.).  Image fusion can also be used to solve the issue of missing data in the 

time series of satellite images caused by shadow or cloud contamination (Racault et al., 2014).  

Complimentary information such as the temporal and spectral data obtained from multiple sensors enhances the 

precision of the image reconstruction of the spatial data with missing information (Q. Zhang et al., n.d.). The main 

objective of image fusion according to  (Schmitt & Zhu, 2016) is “either to estimate the state of target or object from 

multiple sensors if it is not possible to carry out the estimation from one sensor or data type alone, or to improve the 

estimate of this target state by the exploration of redundant and complementary information”.  

The spatiotemporal fusion result will be a synthesized image with high spatial resolution obtained from the first sensor 

and high temporal frequency obtained from the second sensor. Spatiotemporal fusion of sensors with similar spatial 

and temporal resolution can be used for obtaining consistent observations, such as harmonizing Sentinal-2 and 

Landsat satellite images (Storey et al., 2016). The spatiotemporal image fusion methods are categorized into five (X. 

Zhu et al., 2018), Unmixing-based, weight function-based, bayesian-based, learning-based, and hybrid. 

The weight function-based category of spatiotemporal image fusion has the most number of fusion methods 

developed, among which the popular Spatio-temporal fusion technique is the spatial and temporal adaptive reflectance 
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fusion model (STARFM)(Gao et al., 2006), a pixel-based fusion algorithm (Ghamisi et al., 2019) for blending MODIS 

and Landsat surface reflectance. It is better suited for homogeneous landscapes where pure coarse pixels predominate 

since it presumes that the temporal changes of all land cover classes inside a coarse pixel are constant. 

It is a widely used fusion method for larger areas of vegetative change detection (Xie et al., 2016; L. Zhu et al., 2017). 

In STARFM, the information of the neighboring pixels is considered while predicting the pixels with the function 

which gives higher weight to the ‘pure’ coarse pixels. It is assumed that the surface reflectance obtained by the fine 

and coarse resolution sensors are correlated linearly (Mileva et al., 2018). But these assumptions are not true for 

heterogeneous geographic areas and when the weighted function is empirical (X. Zhu et al., 2018). STARFM is 

considered a benchmark and other weight-based fusion methods are developed by addressing the above shortcoming 

or by improving STARFM for fusing other satellite products. Most of the researchers have focused on Landsat and 

MODIS fusion hence it is well-researched and it provides a foundation for devising a STARFM-based image fusion 

workflow for the harmonization of Landsat-8 and Sentinal-2. The present study checks the STARFM fusion methods’ 

potential in fusing Landsat-8 and Sentinal-2, as this fusion method is not restricted to Landsat-MODIS or Sentinal-2-

Sentinal-3 fusion combinations. The relationships between the low spatial resolution satellite images and the high 

spatial resolution satellite image pair and the number of these pairs are comparatively less explored until (Y. Chen et 

al., 2020; Xie et al., 2018) studied how to determine the optimal number of image pairs. The effects of image pairs 

on various spatiotemporal fusion models, the variety of heterogeneous areas, and the composition of image quality 

metrics for assessing the fusion quality are to be studied to choose the appropriate fusion model for a context-specific 

application. 

In recent studies, the fused image quality assessment which is used to measure the similarity or difference is carried 

out using the comparison between the reference image and the fused image. Structural similarity index measure 

(SSIM), Mean Absolute Error (MAE also known as Average absolute difference AAD), correlation coefficient (r), 

relative dimensionless global error (ERGAS), coefficient of determination (R2), and root-mean-square error (RMSE) 

are mean error (ME, also named as Average difference AD) (X. Zhu et al., 2022). Quantitative evaluation using these 

metrics offers a more accurate and unbiased assessment of the effectiveness of spatiotemporal fusion approaches than 

qualitative evaluation (or visual assessment). A quantitative analysis is an objective analysis that is based on 

mathematical modelling. The spectral and spatial similarity between the raw input images and the fused image is 

assessed using a set of pre-defined quality indicators to determine the quality of the fused image (Y. Zhang, 2008). 

The referenceless image quality metric used in this study is Blind/Referenceless Image Spatial Quality Evaluator 

(BRISQUE) which trains a support vector regressor (SVR) for perceptual quality prediction using scene statistics of 

locally normalized luminance coefficients (Mittal et al., 2012). A suitable accuracy evaluation approach may account 

for accuracy in both the spectral and spatial domains (X. Wang & Wang, 2020). 

 

3.  MATERIALS AND METHOD 

 

3.1 Data 

 

Multi-source satellite images having different spatial and temporal resolutions are acquired for the case study. The 

study area is located in Ohio, United States. A brief description of the satellite images used in the present case study 

with their spatial and temporal resolutions is shown in Table 2. 

 

Table 1: Acquisition date of Landsat-8 and Sentinel 2A for the study area 

 

 
 

The Landsat-8 OLI images (accessed from www.usgs.gov) are simulated by downscaling Sentinel-2 MSI images 

(accessed from www.corpenicus.eu) to 30 m resolution in order to eliminate errors from differences in the geolocation 

errors, atmospheric correction, and other artifacts caused by pre-processing operations like resampling and collocation. 

The downscaling is done using the nearest neighbor algorithm. Bands 2, 3, and 4 are selected for Landsat-8 images, 

and bands 2, 3, and 4 are selected for Sentinel-2 images. 
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3.2 STARFM Theoretical Basis 

 

In STARFM (Gao et al., 2006) , given the two coarse resolution images 𝐶𝑡0 and 𝐶𝑡1 at time t0 (reference date) and t1 

(prediction date), and a fine resolution image 𝐹𝑡0  at time t0 (reference date) are acquired from two different satellites. 

Prediction of the fine resolution surface reflectance 𝐹𝑡1  at time t1 (prediction date) is retrieved by using the 

information obtained from the above three images which are acquired.  

Let (𝑥𝑖 , 𝑦𝑖) be the location of the pixel, w be the size of the moving window which is used for searching the similar 

pixels, and 𝑤𝑖𝑗𝑘  be the weighting parameter which consists of three different factors: a) Spatial distance 𝑑𝑖𝑗𝑘  

measured between the central pixel and the neighbouring pixel. b) Spectral distance 𝑆𝑖𝑗𝑘  between Sentinel-2 and 

Landsat-8 data at the given location at time t1. c) Temporal distance 𝑇𝑖𝑗𝑘  between the reference and prediction dates 

Landsat data.  The fine resolution surface at t1 can be calculated as follows: 

𝐹𝑡1(𝑥𝑤/2, 𝑦𝑤/2) = ∑  𝑤
𝑖=1 ∑  𝑤

𝑗=1 ∑  𝑛
𝑘=1 𝑊𝑖𝑗𝑘 × (𝐶𝑡1(𝑥𝑖 , 𝑦𝑗) + 𝐹𝑡0(𝑥𝑖 , 𝑦𝑗) − 𝐶𝑡0(𝑥𝑖 , 𝑦𝑗)),                 (1) 

where the Spatial distance 𝑑𝑖𝑗𝑘  between the central pixel (𝑥𝑤/2, 𝑦𝑤/2) and the neighbouring pixel (𝑥𝑖 , 𝑦𝑗) is given by 

the equation (2): 

𝑑𝑖𝑗𝑘 = √(𝑥𝑤/2 − 𝑥𝑖)
2
+ (𝑦𝑤/2 − 𝑦𝑗)

2
                                                            (2) 

The spatial distance equation (2) needs to be converted to relative distance 𝐷𝑖𝑗𝑘 , a constant A is used to define the 

relative importance of other weighting parameters to the spatial distance: 

𝐷𝑖𝑗𝑘 =
𝑑𝑖𝑗𝑘

𝐴
+ 1                                                                           (3) 

The spectral distance 𝑆𝑖𝑗𝑘  between the coarse resolution image and the fine resolution image at the reference date 𝑡0 

for training is given in (4). In order to avoid zero values, a 1 is added: 

𝑆𝑖𝑗𝑘 = |𝐹𝑡0(𝑥𝑖 , 𝑦𝑗) − 𝐶𝑡0(𝑥𝑖 , 𝑦𝑗)| + 1                                                           (4) 

The temporal distance 𝑇𝑖𝑗𝑘 between the two coarse resolution images at reference 𝑡0 and prediction date 𝑡1 is given 

in equation (5). As in the previous equation a 1 is added in order to avoid non zero values: 

𝑇𝑖𝑗𝑘 = |𝐶𝑡0(𝑥𝑖 , 𝑦𝑗) − 𝐶𝑡1(𝑥𝑖 , 𝑦𝑗)| + 1                                                           (5) 

The inverse of the three distances are calculated to find the combined distance 𝐶𝑖𝑗𝑘, so that the neighbouring pixels 

that are closer to the central pixel and have a smaller spectral and temporal distance are given more weight: 

𝐶𝑖𝑗𝑘 =
1

𝑆𝑖𝑗𝑘
×

1

𝑇𝑖𝑗𝑘
×

1

𝐷𝑖𝑗𝑘
                                                                       (6) 

The sensitivity to the spectral distance can be reduced by using the natural logarithm of the weighting distances: 

𝐶𝑖𝑗𝑘 =
1

ln⁡(𝑆𝑖𝑗𝑘+1)
×

1

ln⁡(𝑇𝑖𝑗𝑘+1)
×

1

ln⁡(𝐷𝑖𝑗𝑘+1)
                                                           (7) 

Normalization of the combined distance 𝐶𝑖𝑗𝑘  results in the sum of the weights to be equal to 1. Thus, the final 

parameters is calculated: 

𝑊𝑖𝑗𝑘 =
𝐶𝑖𝑗𝑘

∑  𝑤
𝑖=1  ∑  𝑤

𝑗=1  ∑  𝑛
𝑘=1  𝐶𝑖𝑗𝑘

                                                                    (8) 

The similar neighbour pixels inside a window is filtered based on considering whether that pixel contains more spatial 

and spectral information than the central pixel. In order to take in account, the uncertainty during the pre-processing 

of the surface reflectance of the satellites, an uncertainty parameter is introduced to the filtering condition.  

 

3.3 Method 

 

A pair of Landsat-8 and Sentinel-2 images are used for training, and a second Landsat image was acquired on the 

date of prediction. The similarity in the orbital parameters is one of the prerequisites for the spatiotemporal fusion of 

Landsat-8 and Sentinel-2. 
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Table 2: Orbital Parameters of Landsat-8 and Sentinel-2 satellites 

 

 
 

The STARFM proposed by (Gao et al., 2006) is capable of retrieving fine-resolution surface reflectance from these 

data. Utilizing the information from neighborhood pixels, the surface reflectance at fine resolution is calculated. These 

neighboring pixels must be homogenous and spectrally similar. Additional weights are added based on the spatial 

distance of the neighboring pixels to the predicted pixel as well as the spectral and temporal differences between the 

Landsat-8 and Sentinel-2 images. 

The main steps of STARFM include: 

1. Extracting homogeneous pixels with similar spectral properties from the neighborhood of a sentinel-2 

image within a moving window. 

2. Calculating the weight function and multiplying it with an image from Sentinel-2 taken at t0 (𝐹𝑡0) and 

the difference in surface reflectance between two Landsat-8 images taken at t0 and t1 is (𝐶𝑡0 𝐶𝑡1). 

3. Creating a synthetic image at time t1 by assigning the weighted sum on the moving window's center 

pixel. 

 

 
Figure 1: STARFM flow chart 

 

Figure 2 shows the STARFM flow chart. Here F and C denote High spatial resolution images (Fine image) and Low 

spatial resolution images (Coarse) respectively. The corresponding band number of the input image is denoted by b, 

and the width and height of the image are denoted using l and h respectively. The reference date is denoted using t0 

and t1 denotes the prediction date of the images. 

In the python implementation of STARFM (Mileva et al., 2018), computations within the moving window usually 

consume more time (Gao et al., 2017). The vectorized solution can be used for these computations in python where 

the computations are carried out in the memory of the computer. As a result, implementing the method across larger 

regions (such as a single Sentinel-2 tile) might cause memory to run out. The python implementation uses generators 

for carrying out the moving window operations. The advantage is that the generators create iterator objects which use 

less memory.  

In STARFM, a variety of operations are carried out within the moving window, such as computing the standard 

deviation of all the pixels in the window to determine a threshold for similarity. The similar pixels are calculated 

separately for each band. The computations in the STARFM python implementation are done in a 2D space, but 

adding information from the other bands will add more dimensions. Each window is thereby flattened into a row in 

order to reduce the problem's dimensionality. As a result, the dimensions are reduced by a factor of 2. The 

disadvantage of this strategy is the generation of redundant data. 
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Table 3: Equations for calculating image quality assessment metrics (Reference based IQA metrics). 

 
 

The fused images will have both spectral and spatial information. The fusion image quality assessment metrics should 

be able to measure the spectral and spatial information that is present in the fused image. The traditional distance-

based metrics such as RMSE, ME, etc., can be used to assess spectral accuracy. The computation of RMSE and ME 

metrics is simple and uses statistical summaries (such as mean and standard deviation) and the pixel values of the 

entire image. RMSE is used to gauge the degree of inaccuracy in the spatiotemporal fused image. In RMSE since the 

errors are squared before the averaging, it gives high weights to large errors. Therefore, in applications where large 

errors are to be avoided, RMSE may be more helpful. ME is a straightforward measure that highlights the bias of the 

prediction at the image level by using the mean signed difference between the reference image and the fused image. 

Spatial accuracy is calculated using the difference in spatial features (such as texture and contrast) between a fused 

image and the reference image. Robert’s edge (Edge) and local binary pattern (LBP) are used in this case study. 

 

4.  EXPERIMENTS AND RESULTS 

 

In the case study, changes in agricultural fields are being tracked. The test location is close to Ohio, (40.358615, -

82.706838) USA. Two Landsat-8 images from the 04.08.2015 and the 20.08.2015 are used as the input for time t0 

and t1 displaying the changes that occurred within two weeks along with a Sentine-2 image obtained on 04.08.2015 

at time t0 is used as inputs. The output is the predicted image at time t1 as shown in (Figure: 3) for band 4 of both 

Landsat-8 and Sentinel-2. The 225 sq kilometers test site is mostly made up of agricultural land, although it is 

additionally diversified by roads, buildings, woods, and a river. The region is subjected to the logarithmic weighting 

function due to the region's increasing complexity. Given their linear relationship, comparing the observed and 

predicted surface reflectance shows that there is an acceptable overlap between the two. However, it is difficult to 

detect change in fields that are smaller than the coarse resolution sensor's pixel size. 

 

  
Landsat-8 (band 4) at t0 Sentinel-2 (band 4) at t0 
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Landsat-8 (band 4) at t1 Predicted at t1(band 4) (STARFM) 

 

Figure 2: Landsat-8 (Band 4) and Sentinel-2 (Band 4) images acquired at t0 and t1 for the study area and the predicted 

image (Band 4) at t1 using STARFM. 

 

  
Landsat-8 (bands RGB) at t0 Sentinel-2 (bands RGB) at t0 

  
Landsat-8 (bands RGB) at t1 Predicted at t1(bands RGB) (STARFM) 

 

Figure 3: Landsat-8 (bands RGB) and Sentinel-2 (bands RGB) images acquired at t0 and t1 for the study area and the 

predicted image (bands RGB) at t1 using STARFM. 

 

The quantitative analysis of the three bands used in the study is given in (Table 4). The composite of the RGB bands 

for the study area is given in (Figure:3). The characteristics of the image quality metrics used for the study for 

evaluating the fused images are briefly explained in (Table 5)  
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Table 4: Quantitative analysis results 

 
 

Table 5: Characteristics of Quality metrics for evaluating the fused image. 

 
 

5.  CONCLUSION 

In this study, a python implementation of STARFM is used to fuse the Landsat-8 and Sentinel-2 satellite images. The 

results are assessed based on four different full reference-based metrics namely, Local Binary Patterns (LBP), Root-

Mean-Square Error (RMSE), Edge, and Mean Error (ME) which cover the spatial and spectral aspect of the fused 

image. A no-reference/referenceless image quality evaluation metric, Blind/Referenceless Image Spatial Quality 

Evaluator (BRISQUE) is also used to evaluate the overall fusion image quality. The geographic homogeneity of the 

ROI has a significant impact on the outcome of the fusion using STARFM. When only pure coarse resolution pixels 

are available, STARFM produces the best results. For scenarios where the specific classes are smaller than the coarse 

resolution pixel size, the searching window need to be increased and the weighting parameters need to be chosen such 

that it is more sensitive to spatial distance and less sensitive to spectral distance. STARFM was used on this small 

study area, which was roughly 225 square kilometers. The number of similar pixels identified might be increased and 

the outcome could be improved by running the algorithm on a bigger study area. For complex regions such as Land 

use/ Land Cover classes, satellite image fusion is challenging.   
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