
THE CALCULATION OF THE NORTH BANTEN GEOID FROM GRAVITY
RESOLUTION OF 5 BY 5 KM

Dadan Ramdani1,2, Eki Riyanti Suyatno1, Yadi Aryadi1

1Badan Informasi Geospasial, Jl Raya Jakarta Bogor km 46 Cibinong, Indonesia
email: dadan.ramdani@big.go.id

2Universitas Pakuan, Jl. Pakuan PO Box 452 Bogor 16143 Jawa Barat Indonesia

KEYWORD: Geoid, Global Geopotential Model, Stokes, FFT

ABSTRACT: The use of GNSS altitude requires geoid height information so that the elevation information can be 
converted into orthometric altitude. This orthometric height is usually used for practical purposes. In 2015 the 
Jakarta geoid was created and has an accuracy of 0.080 m. Airborne gravimetry carried out for the whole of Java 
Island did not cover the DKI Province because there were obstacles from Airnav. with terrestrial gravimetry carried 
out in this region outside the area measured in 2012. In this paper the Global Geopotential Model used is gif48. The
use of the "delete and restore" method as well as the Stokes and FFT kernels to speed up calculations is carried out 
in calculating the geoid in the Jakarta area. The geoid produced was verified with 11 points in DKI Jakarta 
Province. This verification yields a standard deviation of 0.166 m and a mean square root of 0.411 m.

Introduction

Indonesia  uses  an  orthometric  height  system in  accordance  with the Head of  BIG Regulation  no  15  of  2013
concerning the 2013 Indonesian Geospatial Reference System (SRGI2013). Where the height refers to the geoid
height. The geoid height  must be from the measurement of terrestrial gravity which is tied to the gravity control net
(JKG) that must be bound to IGSN71 (BIG, 2013) .

Geoid is needed in large scale map making, where this large scale creation uses high data from LIDAR. Where the
height of the LIDAR is corrected by using a Geoid so that it becomes an orthometric height. In the use of the height
for GNSS it is necessary to transform its height into orthometric height. To make this height an orthometric height a
geoid height is required. Thus, GNSS users really need Geoid to get their orthometric height.

Orthometric height (H) can be obtained from the ellipsoid height (h) corrected by geoid (N) (Rummel, 1992) . From
equation 1, it can be seen that the orthometric height is the difference between the ellipsoid height and the geoid
undulation (Figure 1).

H=h−N ............................................................................................................................................................(1)

Figure 1: Relationship between Orthometric, Ellipoid, and Geoid Heigth
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There are several methods for obtaining the geoid undulation namely the geometric method and the gravimetric
method. In the geoid geometric method it is calculated from a combination of satellite position elevation data
(GNSS) with leveling measurements,  while  in  the gravimetric  method, the geoid is  calculated from terrestrial
gravity data and global geopotential models (gravity potential coefficient).

Ries et al. Made the GGM in 2011 from the GRACE and GOCE satellite data called GIF48 (Ries et al., 2011). For
the Jakarta area, based on the GIF48 data research, it produces the most optimal geoid  (Dadan Ramdani et al.,
2014). so that the GGM data from GIF48 is used to calculate the long wave geoid.

From the gravity data measured in 2010, it was obtained a geoid with an accuracy of 0.080 m (D. Ramdani et al.,
2015). This accuracy is obtained by comparing the geoid from the calculated gravity data with the geoid from the
reduction of the orthometric height data from the flat slice measurement with the ellipsoid height data from the
GNSS measurement.

In 2019 the gravity observations for the DKI Jakarta area were expanded from the Banten area to the Karawang
area carried out by the Geodesy and Geodynamic Control Network Center. With a measurement resolution of 5.0
km for each point. This resolution is different from that in the DKI Jakarta area (D. Ramdani et al., 2015), which is
1.5 km, can be seen in Figure 2. In this study a geoid will be made based on these data.

Figure 2: Distribution of Gravity Points in 2010 and 2019

Method

Geoid is formed by 3 wave components, namely long, medium and short waves. Long waves were contributed by
GGM whereas medium waves were contributed by local gravity and short waves by topographic effect corrections.

Medium waves were calculated from local gravity by using the Brun equation, In the Brun equation the Geoid from
the local gravity observations can be formulated according to equation (2) (Hofmann-Wellenhof & Moritz, 2005) .

N=
T−(W−U )

γ ...................................................................................................................................................(2)



Based on defined data on the earth's surface and on the geoid surface as the boundary plane. A mathematical model
for geoid  can be determined so that it can be formulated in the form of a Boundary Value Problem (BVP) with use
of a Laplace differential equation of gravitational potential disturbance that is limited by conditions. BVP in geoid
calculations is also often called the Geodetic Boundary Value Problem or GBVP.

The geoid is geometrically corrected against the theoretical equipotential plane, namely the ellipsoid plane. This
field is known as the normal earth. And this ellipsoid field is also the reference field. In equation (2) potential
disturbance (T) or also often called disturbance potential outside the geoid surface is a harmonic function so that it
satisfies the Laplace equation (Hofmann-Wellenhof & Moritz, 2005) in accordance with equation (3).
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The  potential disturbance  T will obtain a single solution requiring one boundary condition equation  (Rummel,
1992). And by bringing the geoid as a spherical with constant radius R, the boundary condition is in accordance
with equation (4).
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where ∆g is the gravity anomaly which is defined as the difference between the gravity in the geoid g and the
normal gravity γ according to equation (5).

Δ g=g− γ ..............................................................................................................................................................(5)

∆g can be obtained from the measurement of the gravity reduced to the geoid surface and the calculation of the
normal  gravity  at  the  geoid  point.  This  is  a  solution  to  the  geodetic  boundary  value  problem with  the  robin
problem(Prijatna, 2010). In this geoid calculation, the boundary used is the geoid so that the Stokes equation can be
used (Hofmann-Wellenhof & Moritz, 2005). Thus the geoid can be written according to equation (6) which is often
called the Stokes integral.
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S (ψ) is a Stokes function which can be represented by equation (7) or (8)
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ψ is the angular distance on the surface of the globe.

Gravity measurement data must be reduced to geoid except in ocean areas. Thus, the information on earth mass
density and orthometric height above the geoid surface is needed to reduce gravity data to the geoid.

There are several ways to calculate equation (6) from direct calculations or using the FFT or collocation method.
All of these calculation methods have their advantages and disadvantages. Equation (6) is very time consuming, to
increase it can use the Fast Fourier Transformation (FFT) technique (Jekeli, 1982) . FFT requires data in a regular
grid form. The FFT generates data that fits the data grid entered.

This grid data is obtained from the observed gravity point data using the Tri Interpolation Linear method found in
the python matplotlib plugin (Kiusalaas, 2013).

To calculate the geoid using the Stokes integral requires gravity throughout the earth. To be able to use the integral
of the stoke in a limited area, it requires GGM data as a contribution of long waves.

The long waves contributed by GGM have a big contribution. The equation of GGM according to Heiskanen and
Moritz (Heiskanen & Moritz, 1967) can be seen in equation (9).
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where φ and λ are the coordinates of the sphere to be calculated, GM is the gravitational constant (including the
mass of the earth's atmosphere), r is the distance from the center of the earth to the point of calculation, γ is the
normal gravity, Nmax is the maximum GGM number of degrees m and order n, and C and S are components of the
harmonic coefficient, and P is the Legendre polynomial function.

Stokes integral in the calculation is discrete, so it can be calculated by addition using discrete data. The result of the
Geoid skhir is the sum of all wavelengths according to equation (10).  However,  all the contributions from the
results of this geoid on the gravity data must be removed first before calculating the local  geoid according to
equation (11). This theory is often called remove and restore, all contributions are first subtracted from the gravity
measurement results and then put back in the geoid calculation.

N total=NGM+NTC+N lokal ...................................................................................................................................(10)

Δ gtotal=Δ gGM+Δ gTC+Δg lokal .........................................................................................................................(11)

The gravity data used in this study is the gravity data measured in 2010 in the DKI Jakarta province with a data
density  of  about  1.5  km using  the  Lacoste  & Romberg  gravimeter  types  700 and  956.  And the  gravity  data
measured in 2019 with Data density of about 5 km (Figure 2) using the Scintrex type CG5 gravimeter. From the
results of these two measurements.

Results and Discussion

The global contribution from the observed data is first removed to produce the residual gravity data, and then a grid
spaced 5 km north and west  is  created,  resulting in a  point  with dimensions of  78 x 24 (Figure  3).  with the
coordinates  of  the lower left  end  of  6.36525 LS,  106.12719 BT,  and the  upper right  corner  of  6.059767 LS,
107.14359 BT, the space for latitude is 0.013200 degrees and for longitude is 0.013282 degrees.

Figure 3: Contours of Tri Interpolation Linear Grid gravity data



The grid data is then used to calculate the geoid by using the FFT method from Tscherning's (Tscherning & Rapp,
1974) SPFOUR software from Gravsoft. Geoid from the results of these calculations can be seen in Figure 4.

The results obtained were then added with the geoid from GGM GIF48 to produce geoids for the Jakarta and
surrounding areas, which contours can be seen in Figure 5

Figure 5: Geoid results in the Jakarta and surrounding areas

Figure 4: Contour from the spfour of gravity grid data



The quality of our local geoid model can be seen using a procedure using the 11 points in Jakarta. The 11 points
have an ellipsoidal height (h) and an orthometric height (H). So that with these two heights, a geometric geoid can
be calculated. The distribution of the sample is depicted in Figure  6, while the data about the validation point is
shown in Table 1.

Figure 6: Distribution map of the validation points

Table 1: Validation points with position and elevations

No Longitude Latitude Height (ellp) Height (Ortho)
1 -6.2172259 106.8749299 34.576 15.499
2 -6.3186845 106.9101893 60.365 41.233
3 -6.2204172 106.7223984 34.627 15.807
4 -6.2190019 106.7293226 34.562 15.912
6 -6.2361289 106.7574098 38.923 20.050
7 -6.3019064 106.8366012 59.962 40.871
10 -6.2367149 106.7515594 40.502 21.762
11 -6.2073957 106.8588015 32.523 13.628
12 -6.2392342 106.7848056 35.204 16.427
13 -6.2882639 106.8707579 51.110 32.018
16 -6.2268139 106.8762478 31.517 12.623

This local geoid model is verified using these validation points. This verification yields a standard deviation of
0.116 m and an RMS of 0.411 (table  2). When compared with the standard deviation of the previous results by
Ramdani et al.  (D. Ramdani et al., 2015) for 0.080 m the verification result is still below it, this is because the
resolution  is  different.  Meanwhile,  the  RMS value  from this  study  was  smaller  than  the  previous  results  by
Ramdani et al.  (D. Ramdani et al.,  2015) is 0.626 m, this indicates that there is a difference in reference. The
complete verification results are shown in Table 1. Although the accuracy is smaller, the data retrieval time is faster
and the coverage is wider and more economical.

Table 2: Difference of Geoid Geometrc and Geoid Gravimetric

No
Geoid

Geometric
Geoid

Gravimetric
Diff

1 19.077 18,721 -0,355
2 19.132 18,844 -0,288
3 18.819 18,224 -0,596
4 18.650 18,245 -0,406



No
Geoid

Geometric
Geoid

Gravimetric
Diff

6 18.873 18,314 -0,559
7 19.091 18,606 -0,486
10 18.740 18,296 -0,444
11 18.895 18,682 -0,213
12 18.777 18,400 -0,377
13 19.092 18,684 -0,408
16 18.894 18,717 -0,177

StDev 0,116
RMS 0,411

Conclusion

This Jakarta geoid, whose calculations use 5 x 5 km gridded gravity measurement data, has a standard deviation of
0.116 m and an RMS of 0.411 m. This result is slightly worse than our previous local geoid model based on 1.5 x
1.5 km gravity data. This could be due to differences in the gravity measurement method from 1.5 x 1.5 km to 5 x 5
km.
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