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ABSTRACT: City is considered as a main source of greenhouse gas emission which might cause environmental 

modification, such as urban heat island (UHT) phenomenon, ecosystem fragmentation and degradation. The role of 

Blue-Green-Grey infrastructure (BGGI) in mitigating the UHI effects has become a hybrid approach for sustainable 

urban under climate change. In this paper, the combination of remote sensing, GIS, and spatial landscape metrics was 

conducted to analyze the relationship between BGGI and land surface temperature (LST) of Hue City. The LST was 

extracted from Landsat 8 OLI/TIRS image, while BGGI was grouped from land use/land cover was classified from 

Sentinel-2A image. The spatial landscape metrics, including the percentage of landscape (PLAND), edge density 

(ED) were calculated for BGGI by using 10 x10 pixel grid. The multiple regression analysis between landscape 

metrics and LST show a high adjusted R2 value at 0.816 (p<0.05). In which, the PLAND of Blue and Green 

infrastructure contribute to decreasing LST (β = -0.725 and 0.780, respectively). Conversely, the ED of Grey 

infrastricture has a negative contribution on increasing the LST (β = 0.080). In addition, the ANOVA test result 

demonstrates the Blue and Green infrastructure help the LST ease by approximately 20C and 3.50C compared to Grey 

infrastructure (p <0.05). The findings from this study will contribute to providing a significant basis information for 

urban planning in orienting green space.  

 

1.  INTRODUCTION 

 
Rapid urbanization and climate change are two challenges to sustainable urban development, so governmental 

authorities pay much concern about how to mitigate their unexpected impacts by urban planning. The process of 

urbanization has changed natural vegetation types to artificial cover layers, and subsequently increased impervious 

surface area. The artificial surfaces absorb and emit more solar radiation than natural areas so that it increases the 

urban thermal leading to so-called urban heat island effect (UHI) (Schwarz et al., 2012). Therefore, finding ways to 

reduce land surface temperature (LST) becomes a major concern in urban and eco-urban planning (Zhou, W. et al., 

2017). 

The role of Blue-Green-Grey Infrastructure (BGGI) in mitigating the impacts of the UHI has been introduced as an 

integrated approach to achieve urban sustainability under climate change. Urban green infrastructure is an important 

component in urban ecosystems, providing various ecosystem services. Strategies to ameliorate urban temperature 

through green infrastructure can be implemented by using vegetation cover with major forms of the greening of green 

roofs, planting trees and, increasing vegetation (N. Kabisch et al., 2017; Labib & Harris, 2018; Alves et al., 2019; 

Ahmed Sanjana et al., 2019).  

Quantitative studies on the contribution of green infrastructure to heat reduction in urban areas have been mentioned 

by many studies (Bowler et al., 2010; Escobedo et al., 2019; Marando et al., 2019). The effective role of green 

infrastructure to heat reduction depends on the coverage, shape, size, and spatial scale of urban green spaces (Kong, 

F. et al. 2014; Li, X. et al., 2013). The larger the ratio of green space area, the better the cooling effect (Guo et al., 

2019; Jaganmohan et al., 2016; Park et al., 2017). Landscape Metrics are often used to quantify the relationship 

between cover layer characteristics and their potential to reduce the LST (Buyantuyev A., 2010; Connors J.P., et al, 

2013).  

The impact of green space on heat mitigation can be measured using remote sensing at different spatial scales. Using 

satellite data to obtain detailed information on spatial distribution of land use/land cover in conjunction with the LST 

datasets have been carried out by numerous studies (Cao et al., 2010; Tran, Uchihama, Ochi and Yasuoka, 2006). The 

relationship between the LST and green space was examined by using regression analysis in some antecedent studies 

(Zhou et al., 2011; Guo et al., 2019). 

In recent years, Hue City has been implementing new urban area projects to improve and create a living environment 

that accommodates the needs of all people in the city. In particular, the role of green space and natural landscape is 

indispensable in the process of urban development planning, especially the action plan of Hue green city in the 

orientation to 2030. Otherwise, Thua Thien Hue province in general and Hue City in particular are moving towards 

mailto:dtvhuong@hueuni.edu.vn
mailto:nguyenviet.geo@gmail.com
mailto:phong080595@gmail.com
mailto:buithithu@hueuni.edu.vn
mailto:ngbgiang@hueuni.edu.vn


 

 
The 42nd Asian Conference on Remote Sensing (ACRS2021) 

22-24th November, 2021 in Can Tho University, Can Tho city, Vietnam 

 

a smart city whereby applying digital technology in researching environmental resources issues. Therefore, the 

integrated approach by remote sensing, GIS and spatial statistics to quantify the relationship between the LST and 

green space significantly contributes the scientific basis of the modern geographic space arrangement to establish 

further practical plans under the context of climate change. In general, previous studies highlighted the effect of plants 

or green space patterns on temperature, while quantitative investigation on the role of green infrastructure via its 

landscape metrics to the LST has not been paid much attention. Therefore, our main research objective aims to (1) 

measure the landscape indices of Blue-Green-Gray infrastructure (2) explore the effect of Blue-Green-Gray 

infrastructure pattern on the LST and (3) investigate the cooling effect of Blue-Green-Gray infrastructure pattern on 

the LST. 

 
2.  STUDY AREA AND MATERIALS 

 

2.1 Study area 
 
Hue City - the heritage city of Thua Thien Hue Province, is located in the center of Vietnam with an area of 71.69 

km2 and the urban population of 358,754 persons (2018) (Figure 1). The region is characterized by a tropical climate, 

two seasons with little rainy and rainy season. In which, the annual rainy season extends from August to January with 

an average temperature of 20-220C. While the less rainy season is from February to July, with an average temperature 

of 27-290C and the highest temperature reaches to 38-400C in May and June. Hue City is well-known as a green city, 

and was honored as an “ASEAN Cultural City” and “ASEAN environmental sustainability City” in 2004.  However, 

Hue City has been experiencing a rapid urbanization that makes green and blue infrastructure gradually decrease due 

to the expansion of impervious surface (grey infrastructure), and unequally distribute across the city. Therefore, green 

space reduction in combination with risk of climate change and natural disasters are now great challenges that require 

the local government to tackle to assure the sustainable goals in the future.  

 
Figure 1. The location of Hue city 

 

2.2 Data acquistion 

 

In this study, Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) were collected on April 

25, 2019, download free from Earth Explorer (http://earthexplorer.usgs.gov) were utilized to derive the LST. Sentinel 

-2 image at Level-2A, acquired on April 11, 2019, including band 2, 3, 4, 5, 6, 8 A, 11, and 12 with resolution 20 x 

20 m download free from Land Viewer - EOS (https://eos.com/landviewer/) used to extract the LULC and Blue-

green-grey infrastructure. The Level-2A product provides Bottom of Atmosphere (BOA) reflectance images derived 

from the associated Level-1C products, and each Level-2A product is composed of 100 x 100 km2 tiles in cartographic 

geometry (UTM/WGS84 projection) (Suhet, 2015). Both Sentinel -2A and L8 images contain less than 8% cloud 
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coverage, mainly located at the corner of the scene, and 0% cloud coverage over the study area is suitable for 

processing. The existing GIS base data of Hue city also is collected as administrative maps for this analysis. The 

spatial data image was projected into the VN-2000 coordinate system using GIS base data. 

 

3.  METHODOLOGIES 

 

3.1 Land use/land cover and Blue-Green-Gray infrastructure classification 

 

All the bands 2-7, 8A and 11-12 in 20 m resolution of Sentinel 2A image was experienced a pre-processing on ArcGIS 

Desktop Software for further classification. Object-based image analysis has been applied more frequently for 

Sentinal-2A satellite image classification than pixel-based analysis in urban green space, green infrastructure mapping 

and monitoring. Object-based approach reveals various advantages, which enables users to combine spectral 

information and spatial information for extracting target objects, improving image class, and integrating ancillary 

data in the process (Gaurav K. P. & Prasun K. G., 2010; Tamta et al. 2015; Labib & Harris, 2018; Benchelha et al., 

2019).  

Therefore, the object-based classification was selected in this study to interpret LULC types. The eCognition software 

9.1 were used via the class hierarchy to define the threshold of the calculated Normalized Difference Build-up Index 

(NDBI) and default indices. The formulation for calculating NDBI indices was presented as follows: 

NDBI = (SWIR – NIR)/(SWIR + NIR)   (1) 

In case of Sentinel-2A imagery, the SWIR is the reflectance corresponding to the shortwave- infrared spectral band 

(band 11) and NIR is the spectral reflectance of the near-infrared band (band 8). The Normalize Difference Build-up 

Index value lies between -1 to +1. Negative value of NDBI represents water bodies, whereas higher value indicates 

build-up areas. NDBI value for vegetation is low (Zha et al., 2003). 

Six LULC categories were identified from image classification, namely built-up land, water body, agricultural land, 

forest land, trees, shrubs & grass land, and bare land. Green-Blue-Grey infrastructure (GBGI), Blue-Green 

Infrastructure (BGI), or green infrastructure, blue infrastructure are the trend terms used in landscape planning, land 

use planning, ecosystem service response to flood risk and climate change adaptation in the context of urban 

development strategy (N. Kabisch et al., 2017; Labib & Harris, 2018; Alves et al., 2019; Ahmed Sanjana et al., 2019). 

Therefore, the BGGI was classified by following the LULC categories in this study as listed in table 1. 

The accuracy of LULC classification was assessed using 180 “ground truth” points data collected from the fieldwork 

on June 2019. Some accuracy measures derived from the error matrix were used, including the overall accuracy and 

the Kappa coefficient. The Kappa value (k) is from 0 to 1, in which k ≥ 0.8 represents strong agreement and good 

accuracy, 0.4≤k≤0.8 is moderate accuracy and k ≤ 0.4 is poor accuracy (R. G. Congalton, 1991). 

 

Table 1. Identifying the Blue-Green-Grey infrastructure perspective to LULC types 

 

Blue-Green-Grey 

Infrastructure 
Elements 

LULC categories 

group proposed 

Blue Infrastructure 

(BI) 

Natural features: rivers, ponds, lakes, canal, 

wetlands 
Water body (Wa) 

Green Infrastructure 

(GreenI) 

Natural vegetation: urban parks, trees, 

private and public open spaces, forest, 

agriculture, grass 

Agricultural land (AgL), Forest 

land (FoL),Trees, shrubs & grass 

land (TSGrL) 

Grey Infrastructure 

(GreyI) 

Manmade elements: built-up, engineered 

and physical structure, concrete materials, 

roads, barren land and other urban 

constructions... 

Built-up land (BuL), bare land 

(BaL) 

 

3.2 Land surface temperature extraction from Landsat image 

 

The LST represents the heat energy emitted from the buildings, land and the other surfaces of the earth, and LST is 

one of the key parameters in surface energy balance and regional climates (Xiangchen Meng et al., 2018; Aliihsan 

Sekertekin & Stefania Bonafoni, 2020).  

Firstly, the digital number (DN) of the thermal band from the Landsat 8 TIRS (band 10: 10.6 - 11.19 µm) with 100 x 

100 m resolution) were converted to top-of-Atmospheric (TOA) spectral radiance: 

    Lλ=ML Qcal+AL     (2) 

where 𝐿𝜆 is the TOA spectral radiance (Watts/(m² *sr*μm), 𝑄𝑐𝑎𝑙 is the pixel value (DN), and  𝑀L and 𝐴L are rescaling 

coefficients (United States Geological Survey (USGS), 2019). 

Secondly, TOA spectral radiance was transformed to TOA brightness temperature using thermal conversion constants 
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provided in the metadata of Landsat 8 OLI/TIRS image in degrees Celsius (0C):   

𝑇𝑏 =
𝑘2

𝐿𝑛(
𝑘1
𝑘2

+1)
− 273.15   (3) 

where Tb is the TOA brightness temperature in Celsius; K1 is the thermal conversion constant for the band 10 

(K1_CONSTANT_BAND_n from the metadata), K2 Thermal conversion constant for the band 10 

(K2_CONSTANT_BAND_n from the metadata).  

Finally, the LST in Degrees Celsius (°C) was estimated from the calculated using Planck formulation:  

𝐿𝑆𝑇 =
Tb

1+(
∗Tb

a
)∗𝑙𝑛

 ,        (4) 

where 𝜆 is the center wavelength for band 10 (10.9 μm); 𝜌 = ℎ * 𝑐/ 𝜎, where ℎ is the Planck constant (6.626 x 10−34 𝐽 

* 𝑠), 𝑐 is the velocity of light (2.998 x 108 𝑚/𝑠), 𝜎 is the Boltzmann constant (1.38 x 10−23 𝐽/𝐾); ε is the land surface 

emissivity. 

The Normalized Difference Vegetation Index (NDVI) was utilized to estimate land surface emissivity ε by equation 

suggested by Yuan F, Bauer M. (2007). 

𝑁𝐷𝑉𝐼 =  
NIR – R

NIR + R
   ,    (5) 

where NIR is the spectral reflectance corresponding to the near-infrared band of OLI-TIRS (band 5) and R the spectral 

reflectance of the red band of the band 4.  

The land surface emissivity ε was derived using an equation given by Sobrino, J.A. et al. (2008). 

ε = mPv +n,      (6) 

where Pv is the vegetation coverage, the constant values for the emissivities of vegetation and bare soil, m and n were 

calculated as 0.004 and 0.986, respectively. 

Using the NDVI data, the vegetation coverage Pv was estimated using the following equation: 

𝑃𝑣 = (
NDVI – NDVImin

NDVImax - NDVImin

)2 ,     (7) 

where NDVImax and NDVImin are the maximum and minimum vegetation index in the study area, respectively. 

        

3.3 Landscape pattern metrics analysis  

 

Landscape is defined as a heterogeneous land area composed of a cluster of interacting ecosystems that is repeated in 

similar form throughout (McGarigal K., Marks B.J., 1995) and is composed of a hierarchy of patches mosaic across 

the range of scale.  

In our work, two  landscape metrics were selected to examine the effect of BGGI on the LST (table 2) that included  

percentage of landscape (PLAND) and edge density (ED). The PLAND refers to the proportion of all patches of a 

certain patch type in the total landscape area. Its function is to quantify the proportional abundance of a certain patch 

type in the landscape. The ED represents the sum of the lengths of all edge segments involving the corresponding 

patch type, divided by the total landscape area.  

The landscape metrics according to McGarigal and Marks (1995) were calculated following the landscape structure 

analysis program FRAGSTATS version 4.2.  

(http://www.umass.edu/landeco/research/fragstats/documents/fragstats_documents.html). It requires a user specifies 

the level of heterogeneity at class or landscape, and the shape (round, square or hexagon) and window size to be used 

for landscape metric statistic. In this study, a 10x10-pixel window was designed to calculate two landscape metrics. 

 

Table 2. Landscape metrics for analyzing blue-green-grey infrastructure patterns 

 

Metrics 

(abbreviation) 
Unit Formulation Description 

Percentage of 

landscape 

(PLAND) 

% PLAND = 100/A x ∑ 𝑎𝑖𝑗
𝑛
𝑖=𝑗  (8) 

PLAND = proportion of the landscape 

occupied by patch type (blue, green, gray) i 

aij = area (m2) of patch (blue, green, gray) ij 

A = total landscape area (m2)  

Edge Density 

(ED) 
m/ha ED = 10,000/A x ∑ 𝑒𝑖𝑘

𝑚
𝑘=1   (9) 

eik = total length (m) of edge in landscape 

involving patch type (blue, green, gray) i 

A = total landscape area (m2) 

 

3.4 Statistical analysis  

 

The plotted value of mean LST per each element of blue, green and grey infrastructure pixel were extracted for 

analyzing the LST variation and its relationship with BGGI. Analysis of variance (ANOVA) with Welch test was 

employed to examine the significant difference among BI, GreenI and GreyI in controlling the LST.  
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The post hoc test was also conducted for clarifying how different in the LST between the groups of BGGI elements. 

A p-value (< 0.05) was considered a significant means (Field 2013). In addition, we used the multiple-linear 

regression as a statistical model to examine the linkage between the LST and BGGI landscape pattern metrics through 

R2, p-value, standard coefficients β, as well as variance inflation factor (VIF). The mean value of the LST and spatial 

landscape metrics of BGGI elements in grid cell 10x10-pixel window created by fishnet tool were used for statistics. 

All statistical implementations were performed using the IBM SPSS version 26. 

 

4.  RESULTSS 

 

4.1. Blue-Green-Gray infrastructure distribution 

 

4.1.1. Land use/Land cover classification 

 

The hierarchical scheme object-based classification of five levels in each image was implemented by approaching 

fuzzy membership functions (Figure 2). The classified features were extracted following the defined rule set 

classification, in which mainly threshold of default indices (NIR, Green, Brightness, Max.diff) and Normalized 

Difference Built-up Index (NDBI), were utilized for achieving LULC classes (Table 3).  

 

Table 3. Segmentation level of classified features from Sentinel 2 - Level 2A 

Segmentation 

level 

Parameter 

(Scale, shape, 

compactness) 

Number of 

fragmentation 

Classified 

features 

Parameter 

threshold 

Level-1 

 

30, 0.3, 0.7 6,729 Water body  

Land 

NIR ≤ 1,820 

NIR > 1,820 

Level-2 

 

15, 0.3, 0.7 29,664 Vegetation 

No vegetation 

NDBI <-0.1 

NDBI ≥ -0.1 

Level-3 

 

15, 0.3, 0.7 29,674 Bare land 

Built-up land 

Brightness>2,500 

Brightness≤2,500 

Level-4 

 

50, 0.3, 0.7 20,637 Forest land 

Other vegetation land 

Green<530 

Green≥530 

Level-5 

 

15, 0.1, 0.5 32,281 Agricultural land 

Trees, shrub & grass 

Max.diff≥1.8 

Max.diff<1.8 

      
(a)                                                 (b)                                               (c) 

 
(d)                                                        (e) 

Figure 2. Level of fragmentation of Sentinel 2- level 2A (a) Level-1, (b) Level-2, (c) Level-3,  

(d) Level -4, and (e) Level-5 
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The final LULC map was represented in figure 3. The accuracy of classification performance was validated by using 

quantitative measures, including overall accuracy and kappa coefficient (Table 4) for the six LULC types. The overall 

accuracy of LULC map was 81% and the kappa index value was 0.83. These values were acceptable and agreeable 

for analyzing the landscape pattern. 

  
Figure 3. LULC map for 2019 of Hue City 

 

Figure 4. Distribution of Blue-Green-Grey 

infrastructure 

Table 4. Accuracy matrix of classified LULC map 

Classified Sentinel 

2A image data 

Ground truth data 
Total 

AgL BaL BuL TSGrL FoL Wa 

AgL 25 0 3 1 0 0 30 

BaL 0 18 12 0 0 0 30 

BuL 0 0 27 3 0 0 30 

TSGrL 0 0 5 25 0 0 30 

FoL 0 7 0 0 23 0 30 

Wa 0 0 0 2 0 28 30 

Total 25 25 48 31 23 28 180 

Overall accuracy 81% 

Kappa Coeffcient 0.83 

 

4.1.2. Blue-Grey-Green infrastructure mapping 

 

The map of BGGI was produced by regrouping the resultant LULC types as followed the defined of BGGI elements 

(Table 2). The figure 4 and table 5 showed the area and proportion of each BGGI element of the study area in the 

year 2019. 

Table 5. Area and occupancy of Blue-Green-Grey infrastructure in 2019 

Element of BGGI LULC categories Area (ha) Occupancy (%) 

Blue Infrastructure Water body 605.28 8.45 

Green Infrastructure 

Trees, Shrubs & Grass;  

Forest land;  

Agricultural land 

309.08 43.27 

Grey Infrastructure 
Built-up land 

Bare land 
3,456.20 48.27 

 

The BI accounted a minor percentage of 8.45% including Huong river system, ponds mostly concentrated in the 

northern Huong River wards (Phu Hoa, Phu Thuan, Kim Long. The GreyI apparently occupies the highest proportion 

at 48.27%, mainly distributed in the center and south wards such as Citadel areas, Vinh Ninh, Phu Hoi, Xuan Phu, 

Phuoc Vinh, Vi Da… The GreenI accounts for 43.27%, concentrated in the fringe of city and high density in Huong 

So, Huong Long, An Tay and Thuy Bieu ward where the agriculture and forest land were observed. Besides, a mixture 

pattern of the GreenI, BI and GreyI was seen in the Citadel area and Kim Long ward.   

 

4.2 Spatial distribution of landscape metrics indices  

 

The spatial pattern of the PLAND and ED for the BGGI was illustrated at figure 5 and 6. The PLAND indices showed 

a different magnitude in spatial distribution for GreenI, BI and GreyI density. Higher PLAND_BI was seen along 
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Huong River and lakes in Hue Citadel, which its value ranged from 40 to 100%. The remainder areas mainly obtained 

a lower value under 20%. As for the PLAND_GreenI, the areas far away from central urban had a higher value than 

others. The PLAND index of over 60% covered a large areas located in the western site of Hue City where is mostly 

planted by agricultural crop, forest, etc. However, built-up land which was dominated in the eastern site leads to 

decrease the PLAND_GreenI value close to under 20%. Conversely, the PLAND_GreyI illustrates an opposite pattern 

to PLAND_GreenI, in which the areas along Huong River and the eastern site of Hue City had a higher value than 

other areas with a range from 60 to 100%. The dominated built-up land that concentrates in the center city might 

amplify the UHI effects.  

 

 
 

Figure 5. PLAND indices of Blue, Green and Gray Infrastructure 

 

 
 

Figure 6. ED indices of Blue, Green and Gray Infrastructure 

 

As seen in figure 6, a higher value of ED value for BI was observed 

at areas along and surrounding water body (river and lake), while a 

large area in the north and south had a lower value at under 50 m/ha. 

The ED value of GreenI tended to decrease from all sites to the center 

city, however it also shows that the Green Infrastructure at western 

site was slightly fragmented more than other sites. As for the 

ED_GreyI, its value was significantly high at all areas within Hue 

City, except for partially northern site. 

 

4.3 Urban land surface temperature retrieval from Landsat 8  

 

The LST retrieved from Landsat image of Hue City was showed in 

figure 7. The LST in 25th of April, 2019 was found at a wide range 

from 26.27 to 36.160C. The highest temperature was evidently 

observed in center of Hue City like Phuoc Vinh, Truong An, An Cuu, 

Phu Hoi, Xuan Phu (south and south east of city). In contrast, the 

areas far from the central city where vegetation coverage areas were 
Figure 7. Land surface temperature 

calculated for  Hue city 
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dominated by forest land (An Tay ward) and agricultural land (An Hoa, Huong So, Thuy Bieu, An Dong) achieved a 

high rate of GreenI. As a result, this element might enable to reduce radiance absorption, and increase water 

evaporation.  

Consequently, the LST in these areas was observed at a lower intensity than in the central area of the city. While the 

lowest temperature was suitable to spatial distribution of pond and moat system of Citadel region, Huong river 

corresponding to the BI element. 

 

4.4 Effects of Blue-Green-Grey infrastructure pattern on the LST 

4.4.1 LST differences among Blue-Green-Grey infrastructure 

 

The LST value per BBGI pixel was extracted for analyze the different among the BGGI pattern. The boxplots of the 

LST for each BGGI were presented in figure 8 and 9. The significant different in the average LST of BGGI elements 

were observed. The figure 8 shows a higher mean LST in GreyI than green and blue infrastructure. The GreyI caused 

the highest average temperature mainly associated with the capacity of the construction of material, impermeable 

surface absorb more incoming solar radiation on the surface and delay release of heat with the lower limit of 

temperature is about 29.30C and the maximum temperature is 34.40C. GreenI had an average temperature 

approximately 300C and ranged from 27.5 to 32.50C, it is might be attributed to the variability of the agricultural and 

forest land of the city. The BI of the city occupies a small proportion in the central of the city whereby it has the 

important role in reducing the LST. From the boxplot, the temperature of BI shows a minimum value at about 26.270C, 

while its maximum value is about 360C. This figure is higher than that in GreyI. The mixed pixels between water 

bodies (ponds and moats system, channel, river) and bare land might to present the high LST values in BI because 

the spatial resolution of Landsat 8 OLI  at 100x100m leads to bias the temperature surface. 

  
Figure 8. Boxplot of land surface temperature for BGGI Figure 9. Mean plots of LST for BGGI 

 

The result ANOVA test in the observed significance value of Levene statistic is less than 0.05, indicating the variance 

were unequal and the variances are significantly different (Table 6). Then the robust test of quality of means is 

examined with a value of Welch is significant (<0.05), referred the means of the groups are significantly different. 

Finally, the post hoc multi comparison was conducted with parameter of Games-Howell for discovering how different 

of the LTS of BGGI elements. In table 6, the mean LST is relatively different among BGGI, in which GreyI makes 

LST reach to 32.480C. The mean LST in BI is the lowest at 290C. Results indicates that BI and GreenI can decrease 

LST by approximately 20C and 3.50C in comparison with GreyI. 

 

Table 6. ANOVA statistical analysis in the differences among Blue-Green-Grey infrastructure 

 

ANOVA test (Post hoc tests: Tamhane) 

Dependent Variable: LST 

Independent Variable 

(I) BGGI 

Mean Difference 

(I-J)* 
Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

BI GreenI -1.698 0.025 0.000 -1.758 -1.638 

GreyI -3.484 0.025 0.000 -3.544 -3.425 

GreenI BI 1.698 0.025 0.000 1.638 1.758 

GreyI -1.787 0.008 0.000 -1.806 -1.768 

GreyI BI  3.484 0.025 0.000 3.425 3.544 

GreenI 1.787 0.008 0.000 1.768 1.806 

*. The mean difference is significant at the 0.05 level. 
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4.3.2 Blue-Green-Grey infrastructure landscape pattern metrics and LST 

 

The two landscape metrics of PLAND and ED were employed to analyze the effect of BGGI elements on the LST of 

Hue City. The result of multiple regression through enter method explained how effect of BGGI elements on the LST 

change, in which the LST is the dependent variable and 6 variables as PLAND_BI, PLAND_GreenI, PLAND_GreyI, 

ED_BI, ED_GreenI, ED_GreyI are the independent variables (Table 7). The regression model results in significant 

good degree of prediction with a high Pearson correlation R =0.904, adjusted value R2=0.816, and the .sig value less 

than 0.05. The PLAND_GreyI, ED_BI, ED_GreenI metric were removed from the model. The ED_GreyI, 

PLAND_BI, PLAND_GreenI metrics were determined with the best predictive performance with a significant value 

(.sig <0.05), in which the PLAND of Blue and Green Infrastructure contribute to decreasing LST (β = -0.725 and 

0.780, respectively). Conversely, the ED of GreyI has a negative contribution on increasing the LST (β = 0.080).  

 

Table 7. Multiple linear regression of landscape pattern metrics and LST 

 

Variable 
Standardized 

Coefficients βeta 

Statistics 

R Adjusted R2 Sig. VIF 

Dependent Independent      

LST ED_GreyI 0.080 0.904 0.816 0.00 1.657 

 PLAND_GreenI -0.730   0.00 1.735 

 PLAND_BI -0.695   0.00 1.314 

 

From the regression formulation: LST = 0.080 * ED_GreyI - 0.730 * PLAND_GreenI - 0.695 * PLAND_BI, it can 

be interpreted that the PLAND_GreenI has more significant effect in mitigating the LST than PLAND_BI in the study 

area. Hence, increasing vegetation cover is the priority solution in urban planning under the context of climate change.    

In this study, with the assistance of GIS and RS techniques, we conduct successfully landscape pattern analysis for 

BGGI at 10x10 pixel grid and LST estimation. However, due to the lack of available ground-truth LST observation 

data, the LST retrieval from Landsat image is still uncertainty without validation performance. In addition, the size 

of grid in defining landscape pattern statistic might effect on the relationship not only between the LST and the ED 

of BGGI but also between the LST and the PLAND of BGGI. Therefore, it is necessary to attempt to do this 

investigation at smaller grid sizes and more landscape metric indices. From those, we can explore much more 

meaningful information on their relationship. Moreover, this study only highlights how green space impacts on the 

LST to provide general picture on its relation to the LST for urban planning purposes. For more detail, it is necessary 

to concern about connectivity, cost-distance analysis, etc. on purpose to design urban green spaces in the 

environmental protection and recreational areas. 

 

5. CONCLUSION 

 

This study applied GIS and RS techniques to obtain the spatial distribution of BGGI and the LST from Sentinel-2A 

and Landsat 8 OLI/TIRS images. To calculate the landscape metrics indices, 10x10 pixel grid was designed to 

compute the PLAND and ED, then statistical evaluation was performed to examine the relationship between BGGI 

and the LST. The multiple regression analysis between BGGU landscape metrics pattern and LST show a high 

adjusted R2 value at 0.816 (p<0.05). In which, the PLAND of Blue and Green Infrastructure contribute to decreasing 

LST (β = -0.725 and 0.780, respectively). Conversely, the ED of GreyI has a negative contribution on increasing the 

LST (β = 0.080). In addition, the ANOVA statistical analysis demonstrates that the BI and GreenI could help the LST 

ease by approximately 20C and 3.50C compared to GreyI. The findings  indicate that more green spaces should be 

developed as a effectively potential solution reduce air temperature and increase relative humidity in urban areas. As 

a results, the ED metric will be an effective measurement for depicting the relationship between BGGI and the LST. 

The findings from this study will provide some significant basic information for urban planning in orienting green 

space.  
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