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ABSTRACT: This study focused on the determination of maize cultivated lands in Cukurova Basin, Turkey with 

the object-based classification of Sentinel 2 satellite images assisted with near real-time field campaigns. Cukurova 

Basin includes one of the biggest agricultural plains of Turkey and ranks first in the production of maize, soybean 

and pistachio. In addition, a considerable amount of cotton plantations are applied on the plain in addition to citrus 

farming, which makes the agricultural pattern of the plain too complex. This study uses a single-date image mosaic 

as input data for classification. Field campaigns provided several ground-truth parcel data with planted crop type, 

which is used to extract the spectral responses of crops through image bands. This information is used for defining a 

threshold-based classification schema. Results of the study indicate that, by designing a threshold-based hierarchical 

classification schema concerning spectral responses of the crops, over 90% accuracy can be achieved in the 

detection of maize planted parcels. 

 

1.  INTRODUCTION 
 
Increment in the human population brings out extensive food requirements all around the world, which increases 

the need for efficient monitoring and management of the agricultural fields. Especially, basic food products such as 

wheat, barley, maize are becoming more vital for the world's food policies (Löw and Duveiller, 2014). Mapping and 

monitoring the agricultural lands is useful for managing crop risks, implementing plantation policies and controlling 

the water use (Gallego et al., 2014, Araya et al., 2016). However, monitoring the agricultural lands that spread over 

large areas is a challenging task.  

 

Remote sensing satellites provided valuable support in agricultural monitoring at local and regional scales for 

decades, by providing multispectral images, thus providing repeatable and continuous measurements over large 

areas (Gitelson et al., 2002, Begue et al., 2018). The use of remote sensing data in agricultural monitoring has 

increased especially with the launch of free of charge Landsat satellite series (Biradar et al., 2009). In the last 

decade, Sentinel 2 twin satellites improved this opportunity with high spectral and temporal resolution capabilities. 

Specifically, the availability of red edge bands and five-day revisit time, makes the Sentinel 2 satellite images an 

efficient data source for agricultural studies (Vanino et al., 2018, Feng et al., 2019).  

 

From the satellite image perspective, there are mainly two categorical camps for agricultural monitoring and 

cultivated area detection. One group of methods mainly focuses on crop mapping by use of spectral features of the 

satellite images combined with textural or spatial features such as homogeneity entropy, dissimilarity etc. (Bannari 

et al., 2006). The second group of methods use high temporal image dataset and to analyze the crop phenology with 

help of spectral vegetation indices and spectral features to determine the crop type (Shao et al., 2016). On the 

analysis side, one of the main requirements is to determine the cultivated area detection of crops. While machine 

learning classifiers are popular among pixel-based approaches (Cai et al., 2018), object-based classification 

becomes an important option especially if a parcel-level determination is required (Pena-Barragan et al., 2011). 

 

This study proposes an object –based classification approach to determine the maize planted parcels in a large basin 

with use of single date Sentinel 2 satellite image mosaic and threshold based rule set extracted from spectral and 

textural properties of the image with the aid of near real time field campaign. The rest of the paper is organized as, 

description of the study area and used dataset, methodology that includes pre-processing of the data, object-based 

classification and accuracy assessment, experimental results and accuracy metrics and lastly the concluding remarks.  

 

2.  STUDY AREA AND DATA 

 

Cukurova Basin is located in the southern part of Turkey and hosts a large alluvial plain named Cukurova Plain that 

is surrounded by mountains on its North and East (Figure 1). The plain is fed by important rivers that are Ceyhan, 

Seyhan and Goksu, which makes the basin as one of the most agriculturally productive areas in Turkey. Main 
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agricultural products of the region are cotton, soy, peanuts, corn, wheat, maize and various fruits and vegetables. 

Mid and east parts of the basin receive an annual precipitation of 1000 - 1500 mm while west part receives 600 - 

700 mm (Papila et al., 2020). 

 

As the main data of this study, Sentinel 2A satellite images of basin were downloaded as MSI L1C processing level. 

The region is covered by six image frames all of which were acquired on 16.05.2018. The ground truth data used in 

this study are collected through field work, an initial 100 coordinated samples with different agricultural crops, to 

be used for spectral information extraction - classification (Figure 2), and an independent 635 coordinated samples 

for accuracy assessment.  

  

 
Figure 1. Sentinel 2 satellite image composite of Cukurova Basin dated 16.05.2018 (R: Red edge 3, G: Red edge 1, 

B: Red) 

 

 
Figure 2. a) Set of ground samples overlaid on Google Earth © (M: Maize, P: Cotton, Y: Clover), and b) 

corresponding Sentinel 2 mosaic dated 16.05.2018 (R: Red edge 3, G: Red edge 1, B: Red) 
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3.  METHODOLOGY 

 
3.1 Pre-processing 
 
The first step of the preprocessing is the atmospheric correction of the Sentinel 2 MSI L1C processed satellite 

images to obtain the ground reflectance values from the quantized digital numbers. This process was performed 

using the ATCOR module of PCI Geomatica© software. The process requires image acquisition date, solar zenith 

and azimuth angles, and band order information as the basic input parameters to perform correction, that were 

extracted from the metadata file of the image. In the first step, a cloud mask was produced from the blue band of the 

image with “26%” seed ToA, “20%” lowest ToA, and “4 pixels” dilation parameters. For the next step, Aerosol 

type, seasonal condition, and constant visibility parameters were set to “rural”, “mid-latitude winter” and “30 km” 

respectively. Further correction steps require the use of a digital elevation model (DEM) to derive the topographic 

variation, illumination variation, and spectral scattering information.  In this research, slope, aspect, illumination 

and shadow maps were produced from ALOS –W3D DEM data due to its reported accuracy performance (Alganci 

et al., 2018). In the last step of atmospheric correction, adjacency effects and bidirectional reflectance effects were 

minimized. The adjacency correction is performed with a 9 pixels size kernel filter through 2 iterations. A linear 

BRDF function with incidence and exitance angles based on correction factor was applied in this research. The 

atmospherically corrected Sentinel 2 images were recorded as 16-bit surface reflectance data.  

 

In the second step, six 20m spatial resolution bands of the images were up sampled to fit the initial four 10m 

resolution image bands. This process was performed by cubic convolution resampling method. In the third step, the 

process of creating image mosaics that will cover the whole area from the pre-processed image frames was 

employed. At this stage, the mosaic process was completed by determining the image overlap areas, determining the 

junction lines on these areas, histogram equalization and color balancing processes. In the last step, mosaic image 

was clipped by mask vector in order to maximize the coverage of the agricultural areas in mosaic. 

 

3.2 Object-Based Classification 
 
Within the scope of parcel level image classification, an object-based approach was deemed appropriate. For the 

segmentation process, which is the first stage of the analysis, a multiresolution segmentation algorithm is used. The 

algorithm aims to determine the most appropriate scale parameter for the whole area, based on the necessity of 

expressing different objects in different scales in line with their size and texture characteristics, especially in study 

areas with heterogeneous cover types. The scale parameter controls the amount of spectral variation of the pixel 

group that will make up the object and the resulting segment size. The first of the two complementary parameter 

sets in the segmentation process is the Shape – Color components. Shape and color are defined to complement 

each other with a value of 1, and which parameter will be prioritized in determining the object boundaries is 

determined according to this weighting. Shape properties are also determined by the sub-parameters of 

compactness and smoothness (Bhaskaran et al., 2010, Blaschke, 2010). 

 

Different parameter set experiments were carried out on the data set created within the scope of the study, and the 

parameters that produce the objects in which the surface cover types are represented in a meaningful way were 

determined. In this context, the most appropriate segmentation was achieved with the parameter set defined with 

scale factor: 40, shape: 0.3, and compactness: 0.5. After the segmentation process, the class definition was made 

with the help of the threshold values determined for different image bands according to the spectral and texture 

statistics of the segment, taking into account the ground-based verification data of the maize plant and the spectral 

characteristics given in Figure 3. In the next step, the class definition was tested on the image and the visual 

interpretation of the formed class elements, the threshold values were revised and the optimum threshold value set 

was determined. Accordingly, the threshold values determined for the maize class are given in Table 1. 
 

Table 1. Optimized thresholds for the parameters for maize determination 

Feature  Threshold 

Band 3 (Mean Val.) 0 ≤ B3 ≤ 600 

Band 5 (Mean Val.) B5 ≤ 1100 

Band 7 (Mean Val.) 2900 ≤ B7 ≤ 5200 

Band 9 (Mean Val.) 1000 ≤ B7 ≤ 2200 

GLCM Homogeneity GLCM ≥ 0,20 
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Figure 3. Sentinel 2 spectral characteristic curves of different product types (Profile 1-5: Corn, Profile 6-10: Cotton; 

Profile 11-15: Mandarin – Orange, Profile 16-17: Lemon, Profile 18-20: Clover, Profile 21- 24: Other perennial) 

according to band order (Blue, Green, Red, NIR, Red Edge 1, Red Edge 2, Red Edge 3, NIR 2, SWIR 1 and SWIR 

2) 

 

3.3 Accuracy Assessment 
 

The accuracy assessment procedure was applied on the classification result throughout a single class strategy. In 

this approach a class overall accuracy is found by dividing the validated ground samples to sum of validated and 

invalidated samples and multiply by 100 as given in Formulae 1: 

   

ACCURACY = (OK / (OK + NOK)) x 100  (1) 

 

4.   RESULTS AND DISCUSSION 

 
Classification results were converted to vector data and bend simplification was applied. Areal calculations were 

performed based on four sub regions; Region 1: Ceyhan, Region 2: Tarsus and Seyhan, Region 3: Imamoglu and 

Kadirli, and Region 4: Yuregir. These sub regions were defined according to field campaigns in which ground truth 

information was collected. The classification result visual is presented in Figure 4, and areal statistics were provided 

in Table 2.  

 

Table 2. Areal maize plantation statistics for the sub regions of Cukurova Basin. 

 

Sub Region Area (Ha) 

Region 1 37,531.71 

Region 2 15,518.06 

Region 3 29,762.66 

Region 4 20,211.56 

TOTAL 103,023.99 

 

When the results are both visually and statistically evaluated, it can be asserted that, overall performance of the 

object-based classification in maize detection is acceptable. The analysis approach performed better in vast and 

homogenous maize planted areas and errors are raised from low cultivated and fragmented agricultural lands 

especially nearby the urban lands. 
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Figure 4. a) Original Sentinel 2 image and b) maize and maize candidate classes as vector overlaid on image. 

 

When the maize planted plot areas determined by this parametric set were evaluated using the validation data, it was 

determined that most of the ground truth parcels defined as maize were classified correctly and few of the ground 

truth parcels belonging to other species were classified as maize. On the other hand, some parcel groups, which 

have a lower spectral average than the value ranges determined in the 7th band, and which are not similar to other 

cultivated product types, were encountered. It is highly probable that maize is cultivated in these plots (2nd level 

maize candidate), and the spectral difference in question may arise due to the shift in the planting calendar or the 

problems that occur in plant development. Considering this situation an additional field check with 35 points was 

performed for the maize candidate class and it is observed that 72.73% of them are maize and 27.27% is 

corresponding to orange and lemon gardens. However, these mixed parcels were not removed from the final map to 

avoid biased accuracy assessment. The independent accuracy assessment results are provided in Table 3. 

 

Table 3. Accuracy assessment results of maize planted and other agricultural lands from classification. 

REGION 

/CLASS MAIZE OTHER OVERALL 

  TOT OK NOK ACC (%) TOT OK NOK ACC (%) ACC (%) 

Region 1 63 59 4 93.65 43 40 3 93.02 93.40 

Region 2 78 70 8 89.74 49 48 1 97.96 92.91 

Region 3 139 129 10 92.81 16 16 0 100.00 93.55 

Region 4 121 107 14 88.43 126 122 4 96.83 92.71 

TOTAL 401 365 36 91.02 234 226 8 96.58 93.07 
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5.   CONCLUSION 

 

The purpose of this study is to provide an object-based approach to determine the maize cultivated lands in parcel 

level. The results of the study provided that object-based classification of Sentinel 2 satellite images provided 

reliable results for maize plantation detection and suggests an area estimation that can be used by agricultural stake 

holders. The findings of the experimental setup inform that a hierarchical threshold based ruleset can be effectively 

constructed if ground truth parcel information is available for different crop types. Experiments also suggest that 

high crop mapping accuracies can be achieved with even single-dated satellite image data set if the crop phenology 

of the region is known. Further studies are planned to compare these results with multi-temporal dataset and 

machine learning classifiers to achieve a comparative evaluation. 
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