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ABSTRACT: Landslides are one of the most common geohazards occurring worldwide. Landslide susceptibility 

mapping is crucial to vulnerable areas in terms of mitigating the future impacts from this reoccurrence. Landslide 

susceptibility mapping has been generated for a long time with standard methods such as fuzzy logic, analytical 

hierarchy process (AHP), and logistic regression. Recently, conventional machine learning algorithms have been 

considered as an advanced technique for landslide susceptibility mapping. In addition, it is possible to use artificial 

neural networks and deep learning models in place of conventional machine learning algorithms to provide significant 

results. This study proposes a deep 1-dimensional convolutional neural network (CNN-1D) model to predict 

landslides and evaluate its performance on landslide susceptibility mapping. The proposed model was applied to 

Hokkaido prefecture, where 4,350 landslide scars have been extracted and identified from satellite images dated 

shortly after the 2018 Hokkaido Eastern Iburi earthquake. As a result, the CNN-1D model provides 96% accuracy, 

with 97% precision on the landslide class with 94% recall. In conclusion, applying the deep learning technique (CNN-

1D model) can yield a significantly accurate landslide susceptibility map. 

 

1. INTRODUCTION 

 

Japan Meteorological Agency (JMA) recorded a 6.6-moment magnitude earthquake at the coast of Tomakomai City 

in the eastern Iburi subprefecture on September 9th, 2018. Tremors were felt strongly in the neighboring Aomori 

Prefecture in the Tohoku region, with minor shocks experienced in the Kanto region. The earthquake caused 

subsequent landslides to occur in the neighboring town of Atsuma, where the volcanic soil already saturated by 

Typhoon Jebi triggered slope failures leaving dozens of homes and leaving several residents dead. Zhang et al. (2019) 

further concluded that slope failures occurred in stratified pyroclastic fall deposits overlaying Miocene sedimentary 

bedrock, with sliding liquefaction observed on field investigations. In the subsequent aftermath, an estimated 367.5 

billion yen in damages was reported in Hokkaido. The 2.95 million households were left without electricity due to 

damages to the Hokuden coal power plant in Atsuma. In order to mitigate the socio-economic impact of future 

landslides and identify risk areas, landslide susceptibility mapping should be conducted. In conducting such studies 

on disaster risk, however, choosing an accurate model becomes necessary.  In the past years following the 2018 

Eastern Iburi earthquake, several researchers have used different machine learning algorithms and neural networks 

for landslide susceptibility mapping in the areas affected by the disaster. Nam and Wang (2019) previously 

investigated the use of autoencoders to analyze patterns similar to the landslide scarps identified in the steep 

mountainous areas to obtain an accuracy of 91.1% for the best model. In the same year, Aimati et al. (2019) also 

conducted a study of the same area in the town of Atsuma by applying a tree-based model in identifying landslide 

locations on SAR images, getting an overall accuracy of 80.1%. Liu et al. (2021) introduced a novel method of 

applying a hybrid ensemble model that integrated a Geo-detector (spatial stratified heterogeneity) tool into a random 

forest model. The hybrid model recorded consistent accuracy on all datasets, with the highest being 89.09%. A more 

recent study by Nava et al. (2021) investigated how deep learning CNN can be used to improve landslide detection 

on Sentinel-2 and SAR datasets, with the highest accuracy recorded at 94.17%. This research aims to use a one-

dimensional convolutional neural network (CNN-1D) to create a landslide susceptibility map of southern Hokkaido 

Prefecture. This study also investigated the predictive performance of CNN-1D in identifying landslide-risk areas 

based on data visually analyzed and extracted from previous satellite images of the study area. 
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2. METHODOLOGY 

 

2.1 Study Area 

 

The study focused on a portion of Hokkaido covering a total of 10 towns and cities on three subprefectures: Iburi 

(Abira, Atsuma, Mukawa, Tomakomai City), Ishikari (Chitose City, Eniwa City), Sorachi (Kuriyama, Naganuma, 

Yubari City, Yuni). The area is a lowland of Late Pleistocene fluvial deposits and pyroclastic volcanic rocks in the 

west. Detrital sedimentary rocks underlie the hilly central area. The rugged terrain in the east is a complex lithologic 

landscape due to the presence of fluvial, marine, and detrital sedimentary rocks alongside alternating beds of 

sedimentary and ash deposits. Mafic plutonic rocks found in the area indicate probable tectonic movement (Zhang et 

al., 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Google Earth image of the study area showing the town and city boundaries. 

 
. Figure 2. 10m satellite image of the study area dated May 7th, 2021, showing landslide points (modified from 

Copernicus Sentinel data [2021]) 
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2.2 Data Acquisition 

 

A 10m resolution satellite image of Hokkaido from Sentinel-2A satellite dated October 20th, 2018, was used to identify 

landslide scarps. Landslide scarps were visually analyzed and extracted, with a total of 4350 points identified. A 

recent satellite image from Sentinel-2A dated May 7th, 2021, was used for extracting the NDVI of the study area. For 

binary classification tasks, an equal number of non-landslide points were randomly generated on locations deemed a 

low risk to landslides based on their topography. The weather data encompasses the twenty-year annual precipitation 

of Hokkaido prefecture based on 22 stations. The weather data is interpolated using the Inverse Distance Weighting 

function with the resulting geostatistical layer resampled into a 10m raster. The geologic map is manually digitized, 

with each stratigraphic group clustered together according to predominant rock units reducing the number of units to 

six. Unique geologic units were separated and converted into binary dummy variables. 

 

Table 1 Data resources of the study 

Data Data type Source 

10 m 

multispectral 

image 

Raster (satellite 

image) 

Sentinel-2A (EarthExplorer) 

10 m DEM Raster mesh grid 

(JPGIS/XML) 

Geospatial Information Authority of Japan 

(https://fgd.gsi.go.jp/download/menu.php) 

Geologic map 

(1:200,000) 

Raster (GeoTIFF) Geological Survey of Japan 

(https://www.gsj.jp/Map/index_e.html) 

 

Weather Data Table Japan Meteorological Agency (JMA) 

https://www.data.jma.go.jp/obd/stats/data/en/smp/index.html 

Fault map Shapefile 

(polyline) 

 

GEM Global Active Fault Database 

(https://github.com/GEMScienceTools/gem-global-active-faults) 

 

 

2.3 Selection of Landslide Parameters 

 

Landslide parameters were selected based on their influences in inducing downslope soil movement. In general, slopes 

with a higher degree of the gradient are more susceptible to landslides. Differences in slope aspect affect the degree 

of precipitation and solar radiation, while curvature reflects terrain complexity and topography (Zhang et al., 2019). 

Soil and lithology effectively influence landslides due to differences in shear strength, porosity, density, and particle 

sizes. Seismic energy released by faults can effectively trigger landslides in steep areas with weak soil foundations. 

Hydrological factors such as TWI, rainfall, and stream flow influence soil movements as sediments are suspended 

and can travel the same direction as water. Additionally, moisture can also affect soil cohesion through saturation. 

The amount and condition of vegetation are reflected in the NDVI. Areas with higher vegetation are generally at lower 

risk of landslides as root cohesion effectively strengthens the underlying soil and prevents it from being carried and 

transported by erosional agents. Sixteen-landslide parameters were used in the study, including six unique geologic 

units that were converted into dummy variables. Values of each landslide parameter are extracted into landslide and 

non-landslide points for binary classification tasks and exported as a CSV file. Prior to feeding as input into the CNN-

1D model, each landslide parameter was preprocessed using the Minimum and Maximum Scaling, which scales the 

value of each feature into a range between 0 and 1. The input data was split into 70% training and 30% validation. 
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Figure 3. Elevation (meters)             Figure 4. Slope (degrees) 

  

Figure 5. Aspect                                                                    Figure 6. Curvature  

 

  
Figure 7. Flow accumulation           Figure 8. NDVI 
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2.4 CNN-1D Architecture 

 

Similar to its 2D and 3D counterparts, it consists of a convolutional layer that filters input data with N kernels 

connected to a pooling layer that subsamples the preceding layer's resulting output (Wang et al., 2019). Whereas 

CNN-1D was typically used for predicting temporal data, such as in the case of signal processing (Abdeljaber et al., 

2017) and wind prediction (Harbola and Coors, 2019), the method was applied on landslide susceptibility mapping 

with high predictive accuracy, such as in the works of Wang, et al. (2019) and Fang, et al. (2020). The main difference 

between CNN-1D and its traditional 2D counterpart is that it works by convolving input data into a 1d array instead 

Figure 13. Geologic units 

Figure 11. Mean annual precipitation (mm.) Figure 12. Distance to fault line (meters) 

Figure 10. Distance to stream (meters) Figure 9. TWI 



 

 

The 42nd Asian Conference on Remote Sensing (ACRS2021) 

22-24th November, 2021 in Can Tho University, Can Tho city, Vietnam 

 

of a 2d matrix (Abdeljaber et al., 2017). A 1D convolutional filter takes on 3d tensor data with input shape equal to 

the batch shape (None for an arbitrary number of samples), many steps, and input dimension. For geospatial analysis 

using the CSV file as input data, the number of steps signifies the number of bands or independent variables, with the 

input dimension being 1. 

 
Figure 14. The Architecture of the proposed CNN-1D model 

The CNN architecture used in this study comprises a single 1D convolutional layer with 30 filters and a kernel size 

of 3 with a ReLU (rectified linear unit) activation function. The output of the filter is fed to a max-pooling layer with 

a pool of 2 and flattened prior to input into a standard multilayer perceptron (MLP) classifier. The first hidden layer 

of the MLP is composed of 512 neurons with a dropout of 0.5. The second layer consisted of 256 neurons. The third 

and fourth layers comprised 128 neurons, with the latter having a dropout of 0.25. The fifth hidden layer was 

composed of 64 neurons connected to the output layer with two nodes. All hidden layers have the ReLU activation 

function except the output layer, which uses the sigmoid function for binary classification tasks. The architecture is 

optimized using the stochastic gradient descent method Adam with a learning rate of 0.0003. The model was modified 

from Fang et al. (2020). 

 

 
 

 

 

 

Figure 15. Flowchart of the methodology 
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3. RESULTS AND DISCUSSION 

 

3.1 Model Results 

 

Prior to training, the compiled model is fitted with an early-stopping callback which stops the training routine when 

validation loss increases after five iterations. The compiled model was modified to create a separate model without 

early-stopping callbacks with 100 epochs. The first model converged after 22 epochs with a final training accuracy 

and validation accuracy of 89.99% and 91.3%, respectively. The second model without early-stopping callbacks 

showed greater performance improvement, leading to a training accuracy of 94.8% with validation accuracy of 95.8%. 

Evaluation metrics showed that the second CNN-1D model accurately classified 97% of landslide points with a recall 

(sensitivity) of 94% and F1-score of 96%. In classifying non-landslide classes, the model showed a precision of 94%, 

while the recall value (specificity) for this class is higher at 97%, with an F1-score of 96%.   

 

Table 2. Classification report of the CNN-1D model 

 Precision Recall F-1 score 

Non-landslide 94% 97% 96% 

Landslide 97% 94% 96% 

Accuracy   96% 

 

Further tests were also conducted by increasing the number of epochs beyond 100. However, the tests showed 

diminishing returns in accuracy and were also observed to directly affect the final output image, resulting in darker 

images that lack any factual information.  

 

 

 
 

 

 

 

 

 

 

 

 

3.2 Landslide Susceptibility Map 

 

Due to hardware constraints, all input data are divided into three separate datasets representing the subprefectures. 

This is to reduce prediction time and avoid any memory-related issues that come with handling extensive datasets. 

The three predicted landslide susceptibility maps are classified using geometric intervals and designated with five 

discrete classes ranging from very low to very high to represent susceptibility levels. The choice of using geometric 

intervals is that the three maps are initially part of one large dataset. Geometric interval minimizes the sum of 

squares of elements in each class. The consistent values in the intervals defined by the natural breaks came from 

specific data classification, which could not be compared with multiple maps.  

 

A total area of 4070.81 sq. km. was mapped, covering several portions of 3 subprefectures. As a result, 552.88 sq. 

km. (43.59% of the total area) were classified as very high susceptibility to landslides. In contrast, 461.63 sq. km 

(36.39% of the area) were classified as very low susceptibility in Sorachi subprefecture. In the Iburi subprefecture, 

where most of the landslides were identified, 816.63 sq. km. or 42.66% of the mapped areas, as very high susceptibility 

to landslides. Areas with very low vulnerability were slightly higher at 770.25 sq. km. or 40.24% of the total mapped 

area of the subprefecture. In the mapped areas of Ishikari subprefecture, 369.27 sq. km. or 41.58% of the total area 

mapped was classified as very low susceptibility. Almost half of the area was classified as very high susceptibility for 

431.04 sq. km. or 48.53% of the study area. For the study area, 39.33% were classified as very low susceptibility, 

while 44.23% were classified as very high susceptibility. The summary of landslide susceptibility classes across three 

subprefectures shows in Table 3. 

 

Figure 17. Accuracy loss plot Figure 16. Model loss plot 
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Figure 18. Landslide susceptibility map of the study area showing subprefecture boundaries 

Table 3. Areas of landslide susceptibility in each subprefecture 

 

Susceptibility Sorachi (sq. 

km.) 

Area 

percent 

Iburi (sq. 

km.) 

Area 

percent 

Ishikari (sq. 

km.) 

Area 

percent 

Very low 461.63 36.39 770.25 40.24 369.27 41.58 

Low 82.8 6.53 99.11 5.18 20.28 2.28 

Moderate 128.88 10.16 168.64 8.81 47.6 5.36 

High 42.21 3.33 59.6 3.11 20.01 2.25 

Very high 552.88 43.59 816.63 42.66 431.04 48.53 

Total 1268.39 1914.22 888.2 

 

Table 4. Landslide susceptibility classes of the entire study area 

Susceptibility Area (sq. km.) Area percent 

Very low 1601.15 39.33 

Low 202.19 4.97 

Moderate 345.12 8.48 

High 121.81 2.99 

Very high 1800.55 44.23 

Total 4070.81  

 

3.4 Comparison with Logistic Regression model 

 

For benchmark purposes, a separate test was conducted using the standard logistic regression model. The standard 

logistic regression model showed similar results with the CNN-1D model with an overall accuracy of 96% while 

decreasing precision in classifying landslide points. However, it should be noted that no further tests were conducted, 

such as ANOVA, AIC, or R-squared statistics, to measure the validity of this model. The comparative performance 

of all models is described in Table 5. 
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Table 5. Comparative performance of models used 

 

Model Precision (landslide 

classes) 

Recall (sensitivity) Accuracy 

CNN-1D (with early-

stop) 

89% 94% 91% 

CNN-1D (100 epochs) 97% 94% 96% 

Logistic regression 94% 98% 96% 

 

4. CONCLUSION 

 

The high scores of the proposed CNN-1D model show the superior predictive capability of applying deep learning 

neural networks on landslide susceptibility analysis with a score of 96% accuracy. The study also highlights a protocol 

using geospatial data directly. The geospatial data correspond to their real-world locations, which leads to a model 

with high predictive accuracy. In comparison, most of the study area is deemed to have very low susceptibility, much 

of the eastern portion where most landslide points are identified as very high susceptibility. On the western part of 

the Shikotsu Lake caldera, the surrounding areas are also deemed highly susceptible to landslides. Disaster mitigation 

programs and geotechnical engineering measures must be undertaken in landslide susceptible areas to lessen the 

potential socio-economic impact of future landslides. For future studies, further experiments using other convolutional 

layers (CNN-2D and CNN-3D) would be considered for a highly optimized predictive performance to create a hybrid 

deep neural network. Deep unsupervised neural networks such as autoencoders should also be used to observe the 

distribution patterns of potential landslide occurrences. Furthermore, using images instead of CSV files should be 

conducted to analyze inherent patterns of landslide features and maximize the potential of deep neural networks. 
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