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ABSTRACT: The quality of the statistical-based and machine-based landslide susceptibility map depends highly on 

the dataset's quality for model development. When investigating the training samples in the susceptibility analysis, 

the unbalance area ratio between landslide and non-landslide in any given study area could be an issue in the model 

training procedure. Therefore, determining a suitable ratio for sampling data of landslide and none landslide can be 

important to optimize the modeling procedure and improve the quality of the landslide susceptibility map. So, this 

study introduces a practical method to reduce the uncertainty of none landslide sampling and also experiments with 

various ratios between landslide and none-landslide samples. The synthesis of time-series land surface disturbance 

index (produced by Landsat products), the bivariate statistical Frequency ratio (FR) with a budget of landslide, and 

the experience is considered trustworthy data for reducing the uncertainty when extracting non-landslide samples. In 

addition, to investigate the suitable ratio of the sample subset, the range from 1:1 to 1:10 of respective landslides and 

none-landslide are examined. The hybrid of Frequency ratio (FR) and artificial neural network (ANN) is applied in 

this study to conduct the landslide susceptibility analysis in the Thu Lum watershed in Lai Chau province, Viet Nam. 

Comparatively, for accuracy assessment, increasing the number of absence samples leads to the problem of specificity 

value (true negative rate) increase, but sensitivity (true positive rate) value change downward. Overall, the Area under 

ROC (receiver operating characteristic) curve decreases while we increase the portion of the non-landslide sample of 

the training dataset. Eventually, this research shows that the unbalance sample ratio does not produce a satisfying 

model. For example, the unbalance ratio can be obtained when directly using the actual landslide and non-landslide 

area ratio. On the other hand, a balanced ratio is recommended in this study for statistical-based and machine-based 

landslide susceptibility analysis because it generally produces a landslide susceptibility map with better model 

performance. 

 

1. INTRODUCTION 
 

1.1 Introduction 

 

Landslide susceptibility modeling is important to mitigation the risk of occurrence in the future. Landslide 

susceptibility is one of the key information which illustrates the spatial distribution of landslide occurred potentially 

(Guzzetti et al., 2006). The reliability of a landslide susceptibility analysis depends on (i) the usage dataset quality, 

which includes independence variable (factors) and dependence variable (landslide sample), and (ii) the method of 

conducting the modeling. Basically, in terms of usage data, besides the accessible landslide conditioning factors, the 

qualitative and quantitative landslide sample subset is significantly vital conducting good landslide susceptibility 

modeling.  However, very few studies have analyzed the influence of sample quality on modeling results. The 

sampling location and sampling method for training and control files have also been discussed in previous studies 

(Lai and Tsai, 2019; Heckmann et al., 2014). For example, how the change in the ratio of the number of landslides 

and non-landslide points added in the sample subset affects the results of the model. In addition to landslide samples, 

assessing free landslide areas is still vague but should be useful when extracting non-landslide samples (Hong et al., 

2019; Zhu et al., 2018).  

According to previous works, both landslide and none-landslide sample strategy selection have existing problems. 

In terms of landslide sampling: (i) the training sample and the test sample should not be in the same landslide block 

because it will lead to the problem of lack of reliability when testing (San, 2014), (ii) different perspectives of 

scientists about the type of sample should be single point or pixel-based has been summarized in previous research 

(Chu et al., 2020a), and (3) the best landslide polygon sample should be the main scarp of the landslide. For non-

landslide sampling, Park and Kim (2019) employed The normalized frequency ratio to extract the non-landslide 

dataset for the absence of a dataset. Another attempted an empirical threshold of landslide density located in the slope 

unit to separate stable and unstable areas (Rossi et al., 2010). However, the real absence data may be hard to obtain 

directly like what we can see (Hong et al., 2019). 

This study investigates the influence of integration between the much commonly recommended landslide 

sample point selection of the single event-based and increasing non-landslide point ratio. Long tern satellite data were 
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applied to investigate the free landslide regions to assist the non-landslide sampling procedure. In this study, the 

Frequency Ratio (FR) was adopted to quantify all applied conditioning factors in an Artificial Neural Network (ANN). 

The study area, Nam Ma basin – Lai Chau –Viet Nam is selected to perform the analysis, considering thirteen 

conditioning factors and different ratios between landslide and none landslide points of training subsets. 

 

1.2 Study area and data usage 

 

The selected study area is Thu Lum as a small basin of the Da river system located in Muong Te district - Lai Chau 

province, Vietnam. The watershed is about 179.64 km2 in the high mountainous terrain and low-density population 

(Fig.1.). This area was recorded as a noticeable and serious rainfall-induced landslide occurrence in 2018. The single 

event-based landslide inventory was investigated based on the integration of satellite images and field surveys. Then a 

total of 702 single points of the landslide was selected (black dot in Figure 1). According to the accessible data, thirteen 

landslide conditioning factors were considered, created from various data sources (Table 1). 

 

 
Figure 1. Location of the study area 

 

Table 1.  Data collection and sources 

* Department of Natural Resources and Environment 

The detailed landslide conditioning factors are described in our previous work (Chu et al., 2020b) 

 

2. METHODOLOGY 
 

2.1. Landslide training subset selection 

 

In this study, we adopted the single point at the highest position within the landslide polygon. Hence, 702 landslide 

polygons from landslide inventory were used to define the landslide subsets. Additionally, none landslide samples 

also need to be carefully investigated to avoid uncertainties. For non-landslide sampling, the long-term information 

associated with land surface disturbance can be assessed using the LandTrendr algorithm (Kennedy et al., 2010). It 

has been roofed and pointed out that time series land surface disturbance data has a positive contribution to avoid 

uncertainties for none-landslide sample investigation (Chu et al., 2020a). Subsequently, we randomly select the none 

landslide sample points with a ratio of 1:1 to 1:10 to produce ten different sample subsets. The robustness and 

consistency of the sample subset have been roofed in our recent previous work, so in this experiment, we just simply 

randomly separate the training set with 70% and remain part is testing (this ratio is much commonly used). 

 

2.2. Model conduction 

 

2.2.1. Frequency ratio 

 

Data Type Source Annotation Propose dataset 

Cadastral map Vector DNRE* Detailed surveying scale 1:1000 road network 

Topographical map 
DEM 

(raster) 
DNRE* 8 pieces DEM 10 m resolution 

slope, elevation, aspect, TWI, 

curvature, stream network 

Satellite image 

(Sentinel 2) 
Images USGS 

Post-event (2018.03.11) 
Pre-event (2018.02.21) 

land cover, NDVI 

Geology map Vector 
Institute of 

Geological Sciences 

VAST 
Original scale: 1:200.000 lithology, fault line 

Soil map Vector DNRE* Original scale: 1:100.000 soil types, depth of soil 



 

The relationships between spatial landslide distribution and conducted factors are assumed to be significant, and 

availability for predicting landslides occurred in the future (Nsengiyumva et al., 2019). The area landslide ratio 

occurred, and the ratio of an existing class of factors matched the related landslide ratio. The meaningful of this step 

is that simplifying the data into the homogenous form of arithmetic data (Eq.1: Wij  is the frequency ratio of class i of 

parameter j; FLij is the rate of landslides points in class i of parameter j; FNij is the rate of point of class i of parameter 

j; n is the number of parameters). The detail of FR calculation was introduced in our previous work (Chu et al., 2021) 

 

Wij = ∑
FLij

FNijij

n

j

        (1) 

 

2.2.2. Artificial neural network 

 

Artificial Neural Network (ANN) is an advanced and computational information processing model. The multilayer 

perceptron is the most popular type where the number of the input, hidden, and output layers are defined. The most 

advantage is that it can generate a lot of input data simultaneously for complicated computing, then showing reliable 

results (Polykretis and Chalkias, 2018). The three-layered feed-forward network type included one input layer with 

thirteen factors, hidden layers, and one output layer. The number of hidden layers and the number of nodes in a hidden 

layer can be defined as 2*Ni+1 (Ni is the number of factors) (Hecht-Nielsen, 1987). The completed network is used 

as a feed-forward structure to simulate the entire study area. All of the training and simulation steps were performed 

in MATLAB software. As the ANN model requires, all the range of input factors should be normalized to the range 

0.1 to 0.9 following by equation (2) (Park et al., 2013). The quantified conditioning factors using FR. 

 

Normalized =  
Pixel(i) − Min

Max − Min
(0.8) + 0.1   (2) 

 

where Normalized is the new value, Pixel(i) is the original value of the pixel ith; Min is the minimum, and Max is the 

maximum value of the original range. 

 

2.3. Model performance and validation 

 

The reliability of the landslide models could be measured using statistical criteria for evaluation as Sensitivity, 

Specificity, False Positive Rate, False Negative Rate, Positive Predictive power, Negative Predictive Power Overall 

accuracy, and Kappa index. Additionally, the AUC (area under the ROC curve) was also used for quantitative model 

assessment. The value close to zero means the model is non-informative, while the value close to 1 indicates a perfect 

model, while values in the range of (0.5–0.6), (0.6–0.7), (0.7–0.8), (0.8–0.9), and (0.9–1) can be categorized as poor, 

average, good, very good, and excellent, respectively (Yesilnacar and Topal, 2005). 

 

3. RESULTS 

 

3.1. Landslide susceptibility map 

Different training subsets represent the landslide susceptibility maps in Figure 2: the number of no landslide increases 

from equal to ten times of landslide sample points. All the training with mean square error set smaller than 0.03. 

Subsequently, the accuracy assessment was calculated for detailed comparison both with training and independent 

testing subset. The color stands for the magnitude of susceptibility, mean close to green (value = 0) very low 

susceptibility, and close to the red area (value = 1) very high susceptibility. 
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Figure 2. Landslide susceptibility maps based on different training subsets 

 

3.2. Model accuracy comparison 

 

Table 2. Accuracy assessment of different training cases 

 Model success (training) 

ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 ANN9 ANN10 

Sensitivity 0.95 0.84 0.81 0.81 0.67 0.73 0.63 0.8 0.67 0.72 

Specificity 0.85 0.93 0.97 0.94 0.96 0.96 0.98 0.97 0.98 0.98 

False Positive Rate  0.15 0.07 0.03 0.06 0.04 0.04 0.02 0.03 0.02 0.02 

False Negative Rate 0.05 0.16 0.19 0.19 0.33 0.27 0.37 0.2 0.33 0.28 

Positive Predictive power 0.86 0.93 0.96 0.93 0.95 0.95 0.97 0.96 0.98 0.97 

Negative Predictive power 0.95 0.86 0.84 0.83 0.75 0.78 0.73 0.83 0.75 0.78 

Overall accuracy 0.9 0.89 0.89 0.87 0.82 0.85 0.81 0.88 0.83 0.85 

Kapa 0.8 0.77 0.78 0.75 0.64 0.69 0.61 0.77 0.65 0.7 

AUC 0.954 0.941 0.942 0.929 0.925 0.922 0.913 0.933 0.933 0.921 

S.E. 0.007 0.008 0.008 0.009 0.009 0.009 0.01 0.009 0.009 0.01 

 Model prediction (testing) 

ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 ANN9 ANN10 

Sensitivity 0.87 0.78 0.77 0.75 0.64 0.69 0.64 0.66 0.62 0.65 

Specificity 0.91 0.94 0.97 0.93 0.96 0.96 0.981 0.94 0.972 0.991 

False Positive Rate  0.09 0.06 0.03 0.07 0.04 0.04 0.019 0.06 0.028 0.009 

False Negative Rate 0.13 0.22 0.23 0.25 0.36 0.31 0.36 0.34 0.38 0.35 

Positive Predictive 0.87 0.93 0.96 0.92 0.94 0.95 0.97 0.92 0.96 0.99 

Negative Predictive power 0.91 0.81 0.81 0.79 0.73 0.75 0.73 0.74 0.72 0.74 

Overall accuracy 0.9 0.86 0.87 0.84 0.8 0.82 0.81 0.8 0.8 0.82 

Kapa 0.78 0.72 0.74 0.69 0.6 0.65 0.62 0.6 0.59 0.64 

AUC 0.944 0.924 0.919 0.906 0.91 0.913 0.912 0.888 0.914 0.912 

S.E. 0.011 0.013 0.014 0.015 0.015 0.015 0.015 0.016 0.014 0.015 
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Figure 3. Box plot of accuracy assessment ten different proportions of the sample subsets (left – training result, 

right – testing result)  

 

According to results of landslide susceptibility maps (figure 2) based on different sample ratios between landslide and 

none-landslide ANN1 to ANN10 (the number stands for the ratio that model used for conducting), the threshold 0.5 

was applied for classified landslide (greater than 0.5) and none-landslide (remain area). The confusion matrix method 

was used to calculate accuracy results for comparison (see Table 2). The model train success is the result of using 

training data to estimate, and the model prediction was used as an independent testing subset for calculating. Figure 

3 summarizes and shows visually the results of the variability accuracy with the box and whisker plot based on the 

information in Table 2. All of that information can conclude the influence of the ratio change between landslide and 

no landslide in the sample set. 

 

Figure 4. Receiver operating curves (ROC) of all training cases (a), and testing cases (b)  

 

The results of successive and predictive ability also were presented using the ROC diagram (Figure 4). The different 

color line stands for different ROC; the curve was created by calculated sensitivity and 1-specificity value when the 

threshold increased. Since the area under the ROC curve (AUC) was calculated for compression. 

4. DISUSSION AND CONCLUSION 

 

4.1. Discussion 

Landslides usually occur in remote and high terrain areas, the inventory activity conduct by the human resource is 

time-consuming and difficult. So the contribution of remote sensing technology is a tremendous contribution for 

produce reliable data quickly and accurately. That issue is once again useful for this work in terms of producing 

samples and data creation. Guzzetti et. al, mentioned that the landslide maps cover no more than one percent of the 

steepness area, and also diverse systematic information needs to investigate. So, the progress of data collection is kind 

of time-consuming and resources (Guzzetti et al., 2012). The application of remote sensing to aid the work is an 

absolute and tremendous contribution. Thus, in our case study, the landslide event was recorded right after the massive 

rain period in 2018. Fine resolution 10 meters of free assessed Sentinel-2 data pre and post-event were conducted to 

estimate the occurred areas (Chu et al., 2020b). Additionally, our free-landslide estimation scheme was proposed and 

applied in our previous works with excellent assistance for landslide susceptibility modeling (Chu et al., 2020a; Chu 

et al., 2020b; Chu et al., 2021). Few researchers have focused on the effect of the data quality of none-landslide 

samples (Hong et al., 2019; Zhu et al., 2018). Also, because of limited effort on this problem, so it still needs more 

experiments to make a more confident conclusion. 

 The main issue in the present work is proposed evidence that the problem is when the number of none landslide 

increases. The results displayed above obviously point out that the limited budget of landslides is the only way to 

(a) (b) 



 

increase the number of samples. However, it entirely negatively impacts the ability of the sample in the calculation 

of probability value. As evidenced by the data in Table 3, the increase in the number of non-landslide samples makes 

the bias gradually shift towards that side. Along with that, the error of predicting the landslide decreases (Table 2). 

The same problem has also been pointed out in a few previous studies (Lai and Tsai, 2019; Heckmann et al., 2014). 

 Last but not least, each model has pros and cons, so the term novel hybrid model, model integration, or model 

combination are becoming more popular recently (Chu et al., 2020b; Chang and Chiang, 2009; Felicisimo et al., 2013; 

Wang and Hu, 2015; Yan et al., 2019). It was our concern that we also decided to combine the two models, and of 

course, the results have improved. 

 

4.2. Conclusions 

Our work mainly focused on figuring out the influence of changing proportion between the number of landslide points 

and none landslide points contained in the sample subset for modeling landslide susceptibility. The thirteen 

conditioning factors were collected and processed carefully, especially the novel method of investigating the sample 

subset with the significant contribution of remote sensing data. To overcome the limitation of each method, we 

introduce the idea to integrate a bivariate statistic Frequency ratio and Artificial Neural Network to conduct the 

landslide susceptibility model. Based on those issues, the study worked so smoothly and conducted a clear conclusion: 

(1) 702 landslide sample points were selected nearby the initial location of every single landslide based on the 

differencing method using pre and post Sentinel-2 products. (2) With The assistance of remote sensing technique and 

standard other exclusion criteria, our method is effective for long-term stable areas where will be placed for none-

landslide sample selection. (3) According to the results shown above, it can be concluded that the balance number of 

landslide and none landslide samples should be conducted rather than imbalanced to avoid the bias issue. 
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