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ABSTRACT This paper describes a novel technique of detecting daytime fires and estimating fire temperature and 

fire fractional area using the short-wave infrared (SWIR) bands of high resolution satellites such as Sentinel-2, 

Landsat-9 and WorldView-3. It is a great challenge to detect daytime fires due to the influence of solar reflected 

radiance.  In our algorithm, the surface reflectance is modeled by a linear combination of a small number of 

reflectance basis functions. The algorithm could then retrieve the sub-pixel fire temperature, fire area, together with 

the surface reflectance of the background. This technique would enable detection and characterization of small fires in 

the tropics, where fires are typically small and not as intense as those in the temperate region.  

       
1.  INTRODUCTION 
 
Biomass burning and the associated smoke haze pollution has been a recurring environmental problem in the 

Southeast Asia region (Miettinen et al. 2013). Fires have been a traditional tool for land clearing by shifting 

cultivators and small holders. However, the problem becomes more severe with the largescale conversion of land use 

associated with commercial plantation activities (Koh et al. 2011; Miettinen, Shi and Liew 2012, 2017). During 

extreme drought periods, fires run out of control resulting in prolonged transboundary smoke haze pollution (Eck et al. 

2019; Miettinen et al. 2013). Besides contributing to global warming by the carbon dioxide emission, the smoke haze 

contains pollutants such as fine aerosol particles, NOX, ozone and volatile organic compounds which have 

detrimental effects on human health. In the insular Southeast Asia region, fires predominantly occur in the 

carbon-rich peatlands. For example, during the 2015 fire event, 53% of all fire hotspots detected by Moderate 

Resolution Imaging Spectroradiometer (MODIS) in Sumatra, Peninsular Malaysia and Borneo resided on peatlands 

that cover only 12% of this region (Miettinen, Shi and Liew 2017).  In the two decades from 1990 to 2010, the 

proportion of forest cover in the peatlands of the same region fell from 77% to 36%, representing a deforestation rate 

of 4.9% per year and the land cover change was found to be strongly associated with fire activity (Miettinen, Shi and 

Liew 2012).  

 

Satellite sensors for detection of hot targets such as forest fires typically operate in the medium to long wave (about 3 

to 12 m) spectral bands. However, currently operating satellites with sensors in this thermal infrared region are 

limited in their spatial resolutions, ranging from 100 m (Landsat-8), 300 m (VIIRS on Suomi-NPP), to 1 km or more 

(e.g. MODIS on Terra, Aqua and AHI on Himawari-8). The coarse spatial resolution of the thermal bands results in 

non-detection of small sub-pixel fires. High resolution satellites such as Landsat-8, Sentinel-2, WorldView-3 and the 

older SPOT-4, 5 have several short-wave infrared (SWIR) bands which can potentially be used for detection of small 

fires.  

 

SWIR bands have been employed for estimating fire temperature and fire radiative power using the VIIRS instrument, 

but only during nighttime (Elvidge et al. 2013; Fisher and Wooster 2018). Attempts to use SWIR bands for daytime 

fire detection have been reported (Fraser and Landry 2000; Abuelgasim and Fraser 2002). SWIR signals from the 

SPOT VEGETATION (VGT) sensor was analyzed for detecting fires in boreal forest. It was concluded that the VGT 

1.65 m SWIR band could detect thermal emissions from intense fires, although it was considerably less sensitive to 

hotspots than the 3.7 m channel of NOAA-AVHRR (Fraser and Landry 2000).  The SWIR band of SPOT4 satellite 

images have been used for fire detection by visual inspection. Small fires could be detected due to their elevated 

signals in the SWIR band, in comparison to the visible and NIR bands. These fires would be missed if only 

visible-NIR bands were used (Lim et al. 2000).  

 

The main difficulty of using SWIR bands in detecting sub-pixel fires during daytime is the influence of the solar 

reflectance signal. Our previous studies show that sub-pixel fires as small as those occupying 5% of the pixel area can 

be distinguished from the background pixels in the presence of solar reflected radiance (Liew and Kwoh 2015). 

However, in order to estimate the fire temperature and fire fractional area, it is necessary to partition the detected 
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radiance into the solar reflection and thermal emission components. This is a big challenge since the solar component 

is often similar in magnitude or greater than the thermal component, and the surface reflectance is not a-priori known.  

 

In this paper, we develop a theoretical model for the detection of fires using SWIR bands and design a novel 

algorithm for estimating the sub-pixel fire temperature and area. We employ a set of basis functions to represent the 

spectral reflectance of a multispectral sensor from the visible to the SWIR bands. As an example, we construct an 

orthonormal set of basis functions using reflectance measurements extracted from the NASA’s JPL ECOSTRESS 

spectral library and aggregated to the Sentinel-2 spectral bands. We found that four basis components are sufficient to 

reconstruct the reflectance spectra from the spectral library with good accuracy. By fitting the radiance spectra 

measured by the Sentinel-2 sensor from the visible to SWIR bands, the surface reflectance, fire temperature and fire 

area can be derived. This algorithm has been tested on a Sentinel-2 image of a test area in Central Kalimantan during 

the fire session in 2019. The capability to detect small fires and estimating the fire temperature will enable better fire 

management before they become severe and spread uncontrollably resulting in transbouundary haze pollution and 

ecological disaster. Information about the fire radiative power is useful for modeling the gaseous and particulates 

emission for climate studies. 

 

2.  THEORETICAL MODEL 

 

 
Figure 1. Components of the radiance detected at the top of the atmosphere from a sub-pixel fire 

 

In a simplified model of fire detection in the SWIR region, the radiance detected at the top of the atmosphere (TOA) 

can be modeled by the sum of three components: 1) Atmospheric path radiance pL  due to scattering of sunlight by 

the atmosphere; 2) Reflected radiance rL  due to reflection of solar irradiance by the ground; 3) Thermal radiance 

tL  due to thermal emission from the ground surface (Figure 1). The ground target is a sub-pixel fire that occupies a 

fraction f of the pixel area with a fire temperature fT  while the unburned background has a temperature bT . The 

spectral reflectance of the background surface is ( )   while the fire is assumed to be a perfect blackbody. The solar 

irradiance at TOA is E . The reflected radiance and thermal radiance at TOA are, 

 ( ) ( ) ( ) /rL t t E
 

              (1) 

 ( ) ( ) (1 )(1 ( )) ( )t f bL t fB T f B T


  
      
 

      (2) 

The function ( )B T  is Planck’s blackbody radiance at temperature T. The two transmittance functions 

( ) and ( )t t
 
   are, respectively, the downward and upward transmittance of the atmosphere, which depends on the 

solar angle, view angle and the atmospheric conditions. The transmittance functions together with the atmospheric 

path radiance can be calculated using a radiative transfer code such as 6SV and Modtran. It can be shown that the 

thermal emission from the unburned background surface is negligible compared to the emission from the fire. Hence, 

the TOA radiance can be expressed as, 

( ) ( ) ( ) / ( ) ( )f pL t t E t fB T L
  

                 (3) 

 

The unknown parameters in this equation (3) are the fire temperature fT , the fire fractional area f  and the reflectance 

( )   of the background surface. Suppose that the TOA radiance is measured at N wavelengths 

 ( 1,  2,  ...,  )j j N    . Hence, we can form N equations to solve for N + 2 unknowns. This is thus an 
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under-determined problem which has no unique solutions.  

 

In order to solve the equation (3), we can express the reflectance in terms of a series of M N  orthonormal basis 

functions ( )i jr   in the form, 

 
1

( ) ( )  ( 1, 2,..., )
M

j i i j
i

a r j N


           (4) 

where ia  is the coefficient for the i-th basis function. Hence, the number of unknowns is reduced to M+2.  If 

2M N  , the equation (3) becomes over-determined (i.e. the number of equations N is greater than the number of 

unknowns M+2) and can be solved by using an optimization procedure that seeks a solution minimizing the RMS 

error between the measured and the model TOA radiance, 

2

1

1 ˆ( )
N

rms j j
j

L L
N 

          (5) 

where jL  is the TOA radiance measured at the jth-spectral band and ˆ
jL  is the model radiance computed using 

equations (3) and (4). 

 

 

3.  METHODS 

 

As a demonstration of retrieving fire temperature from SWIR data, we developed the retrieval mode for the  spectral 

bands of the Sentinel-2 MultiSpectral Instrument (MSI) (Table 1).  Sentinel-2 MSI has 13 spectral bands, with 2 in the 

SWIR region. Only ten spectral bands with 10 m or 20 m resolution were used, i.e. all except Bands 1, 9 and 10.  

 

Table 1. Spectral bands of Sentinel-2 MSI 

 
 

The reflectance basis functions were constructed using the reflectance spectra from NASA JPL ECOSTRESS 

Spectral Library (Meerdink et al. 2019). The spectral library contains over 2000 reflectance samples organized in 3 

main categories: Manmade, Soil, Vegetation. The Vegetation category is further divided into Trees, Shrubs and Grass.  

One hundred reflectance spectra were randomly selected from the spectral library, with 25 spectra in each of the 4 

categories (manmade, soil, trees, shrubs). Each spectrum is aggregated to the 10 selected MSI bands using their 

respective spectral response functions. Ten orthonormal basis functions were constructed using the singular value 

decomposition (SVD) procedure. It was found that the first 4 basis functions were sufficient to reconstruct all the 

reflectance to a high degree of accuracy.  

 

One Sentinel-2A scene (Level 1C) covering a fire area in Central Kalimantan on 3 September 2019 was downloaded 

from USGS Earth Explorer portal. The digital numbers were converted to TOA radiance and resampled to 20 m pixel 

width (Figure 2).   The TOA radiance at selected pixels were extracted to test the temperature retrieval algorithm. The 

test pixels were located at sites of active fires, recent burn scars and unburned natural vegetation. Retrievals were 

conducted in Microsoft Excel using the built-in Solver optimization module.  
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Figure 2. A subscene of a Sentinel-2A image showing smoke plumes of active fires and burn scars. 

False color display. Left: RGB = Bands 8,4,3. Right: RGB = Bands 12,8,4.  

 

4.  RESULTS AND DISCUSSIONS 

 

As a demonstration of the temperature retrieval model, the results of retrieval at 3 sampling points (Figure 3) will be 

shown. Sampling point A is located at the site of an active fire, point is at a recent burn scar while point C is unburned 

natural vegetation. 

 

   
Figure 3. Sapling points for testing of the temperature retrieval model. Left: False color image (RGB = 8,4,3) showing 

the locations of the 3 points labeled A, B and C. Middle: Zoom-in image (RGB=12,8,4) of Location A, active fire. 

Right: Zoom-in image (RGB=12,8,4) of Location B, recent burn scar.  

 

 

     
A. Active fire         B. Recent burn scar               C. Unburned vegetation 

Tf = 537.5 K, f = 0.44        Tf = 394.6 K, f = 0.41               Tf < 310 K, f = 0.00  

 

Figure 4. Results of temperature retrieval for Points A (Left), B (Middle) and C (Right).The blue lines are the 

measured TOA radiance while the red lines are the best fit radiance computed using equation 3. The retrieved fire 

temperature and fire fractional area are shown below the respective graphs.  

  

The results of temperature retrieval at the 3 sampling points are shown in Figure 4. At each location, the measured 

TOA radiance (blueline) and the best fit model radiance (red line) computed with Equation (3) are plotted at the 10 
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selected MSI bands. It can be seen that the model (Equation 3) is able to reproduce the measured values very well in 

all the three cases. For Point A (active fire), the retrieved fire temperature is 537.5 K and the fire fractional area is 0.44. 

The fire temperature of 537.5 K indicates that it is a smoldering fire and the fire occupies an area of approximately 

176 m2.  For Point B (recent burn scar), the retrieved temperature is 394.6 K which is quite high compared to the 

normal ambient temperature of about 300 K but it is low compared to the fire temperature. Hence, the result is 

consistent with the interpretation that it is newly burned. For Point C (unburned vegetation), the retrieved temperature 

is lower than 310 K and the fire fraction is zero. Thus, the retrieval model is able to identify this pixel as a non-fire.  

 

The sensitivity of this temperature retrieval algorithm depends on the radiance detected at the SWIR bands. If the 

thermal emission of the hot target is lower than the noise equivalent radiance (NEL), this algorithm will not be able to 

resolve the target temperature. The NEL of Band 12 (2.2 m) is 0.015 
2 1 1

Wm sr m
  

 , which is equivalent to a 

temperature of 310 K. Hence, the detection limit of this model is about 310 K. If the temperature of the target (fire or 

hot surface) is lower than this limit, it is then not possible to detect the target with this model. 

 

The retrieval procedure of this model is implemented by running an iterative optimization routine. As the iterative 

process is computationally intensive, it is still not practical to implement it throughout an image with millions of 

pixels. The next step is to design an optimization procedure that does not involve extensive iterations.     

 

5.  CONCLUSIONS 

 

In this paper, we have demonstrated the implementation of a novel algorithm that is capable of daytime retrieving 

sub-pixel fire temperature using the SWIR bands. The main challenge is to partition the TOA radiance into the 

reflective and thermal emissive components. We overcome this difficulty by modeling the surface reflectance using a 

suitably designed set of basis functions. We show that 4 basis functions are sufficient to reconstruct the surface 

reflectance at 10 spectral bands of Sentinel-2 MSI instrument. Although the results have not yet been validated, the 

retrieved temperature values seem plausible. This technique would enable the detection of small fires with SWIR 

bands of high resolution satellites, such as Sentinel-2, Landsat-8 and WorldView-3. The capability would enable 

better fire management before they become severe and spread uncontrollably. 
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