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ABSTRACT: Hyperspectral imaging has many applications in agricultural and environmental remote sensing. There 

are many metrics that can be derived from spectral data such as vegetation indices which can detect the presence of 

stress and disease. A push-broom imaging system captures via line-scanning, and is capable of a higher spectral 

resolution than a snapshot camera which can only operate on limited spectral band counts. Combining this with the 

low-cost and flexible deployment of unmanned aerial vehicles (UAV) can yield on-demand data of high spatial and 

spectral resolution. The challenge lies in mosaicing the push-broom images. Since each image line-scan has only one 

spatial axis, using area and feature based image mosaicing algorithms is ineffective. We designed a push-broom 

hyperspectral imaging system from commercial-off-the-shelf (COTS) components intended for UAV flight captures. 

This paper details the image mosaicing approach that utilizes the data from Global Positioning System (GPS) and 

inertial measurement unit (IMU) sensors. The algorithm is homography-based and uses the position and attitude of 

the UAV and camera to compute the relative positions of the target and image planes, and projects the line-scans in a 

single mosaic. Test flights were performed using a DJI Matrice 600 Pro to determine the accuracy of the mosaics in 

preserving known measurements and features.  

1.  INTRODUCTION 
 
1.1 Hyperspectral imaging in agriculture 
 

In hyperspectral imaging, the spectrum for each pixel in the image is obtained to find objects, identify materials, or 

detect processes (Chilton, 2013). Most optical payloads for remote sensing are designed to collect spectral signatures 

(Hagen, 2013). In plants, variations in reflectance are caused by differences in species, health and/or potential yield- 

information that is useful in applications such as environmental monitoring, resources management and disaster risk 

reduction (Ferwerda, 2005). The use of hyperspectral remote sensing has increased for monitoring the development 

and health of vegetation, particularly food crops (Reina, 2018). 

 

 

1.2 Advantages of line-scan capture 
 
Multispectral imaging systems often employ taking multiple 2D images over several spectral values. However, 

a line-scanning or push-broom imager builds an image by stacking a series of line (1D) images corresponding 

to a series of multiple shots, like a flatbed scanner. This allows the scanning imager to take advantage of slits 

and prisms to disperse the  light captured over one sensor axis, allowing a finer spectral resolution (Shawt & 

Burke, 2003). In a hyperspectral pushbroom imager, each effective 2D capture is composed of a spatial axis and 

a spectral axis distributed to the pixel count of the corresponding sensor axis. Subsequent lines from the scan 

form a hyperspectral cube, a stack of spatial captures at fine spectral increments (Suomanlainen et al, 2014).  

 
1.3 Advantages of unmanned aerial  vehicles 
 
Unmanned aerial vehicles (UAV), or drones, are aircrafts that require no onboard crew, and have varying 

degrees of autonomy. There has been a surge of advancements and demand for commercial drones in the last 

decade, primarily for recreational, scientific and industrial applications (Hu & Lanzon, 2018). In agriculture, 

drones are used extensively in advanced large-scale farming for quick monitoring of crop growth and conditions 

over large areas. Primarily used for spectral imaging, assessment of crop conditions leads to efficient farming 

methods, adjustments and yield (Reina, 2018). While it is limited in area coverage as compared to satellites, 

UAVs have the advantage of lower cost, on demand deployability, user-defined flight trajectories, flexible 

capture parameters as well as low-altitude, high resolution captures. This makes UAV imaging especially 

effective in disaster and risk assessment, emergency surveys and remote sensing in areas that need closer 

inspections (Sharma et al, 2020) . 

 
 

1.3 Challenges in line-scan stitching 
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Most remote sensing data are arranged and represented spatially via image mosaicing or stitching. Image mosaicing 

is the combination of two or more images in a single image space. Often, this would include image transformations 

that account for differences in capture parameters to project the images in such a way that features and details are 

preserved and aligned properly (Ghosh & Kaabouch, 2016.). Widely used  algorithms include the SIFT and SURF 

algorithms. Scale-Invariant Feature Transforms (SIFT) -based mosaicing looks for image features that are invariant 

to scale, noise and illumination to find points at which to join images together (Lowe, 1999). Speeded-Up Robust 

Features (SURF)-based is like SIFT, but with reduced computational complexity to speed up performance (Bay et al, 

2006) . While said algorithms are effective on conventional 2D images, they cannot handle a line-scan input, as these 

algorithms rely on finding and matching features to align images. 

 

1.4 Proposed solution 
 
This study aims to develop an image stitching algorithm designed to handle the 1-dimensional spatial output of aerial 

hyperspectral imaging. While there are often no matchable features in a line of pixels, UAVs are equipped with 

sensors such as the Global Positioning System (GPS) to determine its lateral position and altitude, and inertial 

measurement units (IMU) to determine its orientation. If camera parameters and capture conditions are known, it is 

possible to estimate the image plane coordinates of any  point on a target area by building a camera model. 

 

2.  STITCHING ALGORITHM 
 

2.1 Image coordinate estimation via homography matrix 
 
The algorithm is a homography-based approach that uses the pinhole camera model to project real world coordinates 

to image coordinate systems.  Any real world object coordinate (Xo,Yo, Zo) can be mapped to an arbitrary space 

coordinate (xa ,ya ,za) using 
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where  Cint is the intrinsic camera matrix Cext and extrinsic camera matrix, respectively (Hartley and Zisserman, 

2003). The arbitrary space coordinate can be mapped to a two-dimensional image plane via a scale factor 1/za as 
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The intrinsic camera matrix is 
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and is defined by the constant parameters that are intrinsic to the imaging system, namely the focal length f , the 

sensor size (xs, ys), and the width and the height of the captured image (w,h). The optical center (ox, oy) of the 

camera is at (w/2, h/2).  

 

 

 

 

The extrinsic camera matrix is 

 

(4) 

 

 

 

and consists of external parameters that define the capture geometry. Cext is composed of a rotation matrix R and a 

translation matrix T. The translation matrix defines the position of the camera in the real world coordinate system, 
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and can be calculated from the GPS records of the UAV. Meanwhile, the rotation matrix is the orientation of the 

optical axis relative to the real world coordinate system, and can be calculated from the IMU unit of the UAV-

system and camera gimbal. The rotation matrix can be broken down into its components from (left to right) as 

 

 

 

(5) 

 

 

 for roll(�, along x-axis), pitch (�, along y-axis ) and yaw (�) , the rotations along the x, y and z, respectively.   

 

The product of intrinsic and extrinsic camera matrices is the homography matrix H, defined as 
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                                                                                                                               . 

 

Note that when we are looking for a planar surface in the real world, to compute the homography, we set Zo= 0, thus 

removing the contribution of the third column of Cext . H will then map a real-world object point in the arbitrary space. 

The coordinates in the pixel space,  (xi ,yi ), can then be calculated by applying the scale factor using 
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                                                                                             . 

 

2.2 Algorithm Flowchart  

 

 
Figure 1. Algorithm flowchart for line-scan image mosaicing 

 

Figure 1. shows a flowchart for the algorithm. During the software development that happened in parallel with the 

imaging system design and assembly, actual 2D aerial snapshots were used, with the central line perpendicular to 

scan direction isolated to simulate the 1D output of a line-scan hyperspectral imager. The next section discusses the 

unmanned aerial vehicles 

 
3.  DATA GATHERING PARAMETERS 
 

There are two set-ups used in testing the stitching algorithms. Table 1 details the UAV, camera and flight parameters 

in the aerial captures. Set-up 1 uses a drone that does not record attitude data, and was used exclusively for near-

stable orientation flights, where only the translations are significantly changed. Set-up 2 was used to investigate how 

well rotational input and direction changes are incorporated.  
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Parameters Set-up 1 Set-up 2 

UAV Mavic Air 2 DJI Matrice 600 Pro 

imaging system camera built-in Zenmuse X3 

pixel size 4.434 microns 1.55 microns 

focal length 8.0 mm 3.6 mm 

capture modes video (60 FPS) snapshot 

image size 1920x1080 4000x3000 

position sensors GPS sensor Present (SRT) Present (EXIF) 

GPS format WGS84 WGS84 (EXIF) 

orientation sensors IMU N/A (present but cannot be 

extracted) 

Present (EXIF) 

camera gimbal N/A (present but cannot be 

extracted) 

Present (EXIF) 

Flight parameters Locations Residential Area, Quezon City University Area, Quezon City 

Motion type straight flight, sinusoidal 

altitude, sinusoidal horizontal 

lawnmower 

Capture height 100 meters 30-50 meters 

Flight speed 10-15 m/s 2-5 m/s 

 (auto 98% front overlap) 

 
4.  RESULTS AND DISCUSSION 
 

4.1 Image mosaics 



 

 
The 42nd Asian Conference on Remote Sensing (ACRS2021) 

22-24th November, 2021 in Can Tho University, Can Tho city, Vietnam 

 

a-1) a-2)

 

b-1) b-2)
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c-1) c-2)  
 

Figure 2. Mosaics from Set-up 1 (residential area) from Mavic Air 2. Left images are XYZ positions over time. 

Right images are corresponding mosaics  . a) Straight pass, b) Sinusoidal vertical, c)Sinusoidal horizontal.  

 

a-1) a-2)
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b-1) b-2)

 

c-1) c-2)
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Figure 3.Mosaics from Set-up 2 (university campus area) from DJI Matrice 600 Pro. Left images are XYZ positions 

over time. Right images are corresponding mosaics  . a-b) Lawnmower capture, c) Straight pass.  

 
Figure 2 shows the results of the residential area capture. Since there is no rotation data, the capute is limited to single 

camera orientation assumptions (zero roll, zero pitch). The yaw is estimated from the first and last positions in the 

GPS. Figure 2a shows a standard single pass. Figure 2b shows a path with sinusoidal altitude. changes in altitude, 

effectively image distance, changes the swath of the capture, and can be seen by the sinusoidal increase and decrease 

in the boundaries of the mosaic. Figure 2c shows a sidewinding flight path. To fill in gaps to detect alignment, 4 pixel 

lines were taken per image. 

 

Figure 3 shows the results of the university area capture. With rotational data available, changes in direction were 

attempted. Figure 3a-b shows lawnmower paths. Figure 3c shows a straight path. To fill in gaps to detect alignment, 

10 pixel lines were taken per image. 

 

For all captures, minimum possible speed (within safe battery life limits) was set to ensure that gaps are minimized. 

The stitched images were generated from source images scaled down to 20% for Set-up 1, and 10% for Set-up 2. This 

is done to speed up processing and analysis. Camera matrices were scaled accordingly. 

 

4.1 Feature alignment, orthogonality and comparisons to known lengths 
 

An obvious performance metric of a stitching algorithm is how well it can preserve details of the target area. The 

images in Figure 2 and Figure 3 were inspected in terms of alignment of straight lines, and orthogonality of 

perpendicular lines. The presence of roof areas provided an abundance of such corners in the residential area, while 

the seats and road paints provided for the university campus captures.  

 

For the residential data, orthogonality can deviate by 1 pixel, or 27.7 cm over long measurements. This is due to the 

inherent skew added by the yaw estimation . The dimensions of visible edges were also compared to Google Earth 

captures, with a maximum difference of 2 pixels, or 55.4 cm. Note that such variations are expected in scaled down 

resolution, i.e. 1 pixel should be 5.54 cm in an ideal 1 line per frame mosaic. Also the assumption of the camera model 

is that the target points are all coplanar, therefore the presence of buildings and trees are significant deviations in 

proportion to capture heights, which were measured from take-off altitude. 

 

There are many rotation and positional errors in the university campus data. While sizes and overall dimensions were 

cleared, there are many detail misalignments. Figures 3a-1and 3b-1 show noisy rotational data over time. There are 

significant misalignments visible between passes of the lawnmower. Figure 3c-1 also has  noisy rotational 

components, resulting in a heavy skew that affects orthogonality, and periodic strip yaw exaggerations. 

 

4.2 Errors and Assessments 
 
The residential data set was performed in a relatively stable weather condition, and thus camera orientation variations 

are very minimal. It is evident in the alignment and image quality that the mosaicing sufficiently recreated the scene, 

even with variations in horizontal and vertical translations.  However, upon closer inspection of Figures 2a-2 and 2b-

2, the terminal ends are slightly warped . This can be accounted for by the flight mechanism of the Mavic Air 2. The 

UAV has a forward pitch when accelerating, and backwards pitch  when decelerating. This causes greater apparent 

motion in between frames even when there is smaller displacement. Similarly, Figure  2c-2 has prominent warps in 

regions of changes in lateral direction. The UAV has to roll left and right to generate the horizontal net-force. These 
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warps can be solved by using a UAV that can output its rotational data. 

 

Figure 3a-2 and 3b-2 showed that the algorithm can handle 180 degree turns if given rotation data. However, the 

built-in GPS cannot handle sharp changes in position, such as changing passes in lawnmower captures. This reflects 

in feature misalignments. 

 

Another visual artifact is the presence of sharp discontinuities in adjacent pixel color values in Figures 3a-2 and 3b-

2. Note the differences in color of the cement road and grass between passes. This is attributed to changing cloud 

cover during capture, as the entire capture lasted about 20 mins, with the UAV moving at approximately 2 m/s. At 

this speed, the UAV is also more prone to occasional gusts of wind, which were present during the capture.  

 

The noisy rotation data of the campus data set features overshoots, making the otherwise straight edges appear jagged. 

This indicates poor sensor response from the gimbal and IMU. The effects are very prominent in Figure 3c, where 

there was a possible calibration error, adding a yaw offset value. Notice in Figure 3c-1, at every 50 frames, there is a 

spike in the X position and yaw value, resulting in bad relative placement of corresponding strips in Figure 3c-2. 

 

As mentioned, the mosaics are compensated for the lower frame rate of the data set. Figure 4 shows the  effect of 

using only one line with insufficient frame rate for a given flight speed. Visible blank gaps appear for the spatial 

coordinates where there is no corresponding frame directly under. Also noticeable are the curved lines of NaN values, 

artifacts that are caused by digitization and incorrect rotation values. 

 
Figure 4. Residential data at 1 line per frame.  

 

5. CONCLUSIONS 
 
The stitching algorithm was assessed as successful in creating an image mosaic of line-scan captures. Generally, 

feature alignments and measurements were preserved if the flights meet the stability requirements. The algorithm, 

however, is sensitive to the quality of the positional sensor inputs, (GPS and IMU), and the temporal resolution of the 

data. 

 

Poor quality rotational data can lead to significant misalignments and wrong reprojections, and in the case of this 

study, ended up being more detrimental due to overshoots from otherwise stable flights. Likewise GPS quality can 

lead to similar problems, more prominently in terms of alignment, especially in multiple pass flights. Possible ways 

to remedy the errors in future studies include improvements in sensor quality, signal processing such as noise 

reduction, and better environmental conditions. 

 

The temporal resolution of the data is important in ensuring the presence of sufficient image points. The data presented 

in the paper compensated by taking more than one line in each image to check for local alignments. Having low 

framerates relative to the UAV flight speed can lead to gaps in the mosaic space. 

 

Note that resolution values are expected to decrease once the actual hyperspectral imager is used for the aerial capture, 

as the presence of a slit can lead to blurring due to the convolution of the slit width with the imaging system. Also, 

the exposure time of the capture should be high enough to get enough light, but low enough to avoid significant 

blurring.   
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