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ABSTRACT: Surface reflectance derived from optical satellite images is a fundamental and important material for 

remote sensing applications. The advanced atmospheric corrections have achieved great progress in the removal of 

atmospheric effects by using complicated physical-based models. However, the process of image-by-image 

atmospheric correction may cause bias errors for multitemporal images, which produce temporal inconsistencies and 

discontinuities over the surface reflectance of invariant ground objects. In this study, a surface reflectance correction 

is proposed for multispectral and multitemporal satellite images. The surface reflectance correction is determined by 

using pseudoinvariant features instead of an entire image, and the correction is based on a harmonization technique 

with temporal-consistency and spectral-consistency constraints. With the constraints, the spectral signatures in 

multispectral images can be maintained, while the surface reflectance biases in multitemporal images can be removed 

during the image harmonization. In the method, the pseudoinvariant features are determined by using iterative 

reweighted multitemporal and multivariate alteration detection, called IRMMAD, which is an extension of IRMAD. 

The multispectral and multitemporal surface reflectance bias removal is formulated as an optimization problem, and a 

least-squares linear system is solved for optimal harmonization. Qualitative and quantitative analyses on six 

atmospheric corrections (AC) models multitemporal images have been conducted, and the methods are evaluated 

using the measurements of spectral and temporal consistencies. The experimental results show that the surface 

reflectance biases can be significantly removed while the spectral signatures can be preserved. In addition, the 

proposed method outperforms related harmonization methods in terms of consistency measurements.   

 

1.  INTRODUCTION 

 

In Landsat satellite generations, the most popular coverage products are Landsat generations, especially Landsat 5 

TM, Landsat 7 ETM+, and Landsat 8 OLI, which spans almost three decades orbiting. They provide radiometric 

products at level 1 and level 2. The level 1 and level 2 products convert DN to top-of-atmosphere (TOA) and 

bottom-of-atmospheric (BOA), respectively. Level 1 product is stored in DN, where the conversion to at-sensor 

reflectance is provided in the metadata as standard manufacture of the sensor calibration parameters, solar zenith 

angle, and solar irradiance are registered. Atmospheric correction is a conversion from TOA to BOA. First of all, the 

data recorded in most remote sensing satellites, especially Landsat generations, are stored in the form of a digital 

number (DN). Landsat 7 ETM+ and lower generation store DN in 8-bit radiometric resolution. Landsat 8 OLI stores 

DN in 16-bit radiometric resolution (Reuter et al. 2014). This different resolution is by design produced from the 

manufacturer (H. K. Zhang, Roy, and Kovalskyy 2016; L. garda Denaro et al. 2018; Franke, Heinzel, and Menz 2006). 

The sensors' changes can be ignored since the TOA or BOA reflectances are applied using three steps: radiometric 

conversion, apparent reflectance conversion, and atmospheric (Caselles and Lóópez Garc Ĺ A 1989; Pu, Landry, and 

Zhang 2015; Helder et al. 2013; Nazeer, Nichol, and Yung 2014; E. F. Vermote and Kotchenova 2008; Teillet and 

Fedosejevs 1995; Xu 2006). Radiometric conversion and apparent reflectance conversion, conversion from DN to 

TOA product, are undoubtedly implemented, associating the sensor calibration coefficients, solar zenith angle, and 

solar irradiance at the top of the atmosphere (H. Zhang, Zimba, and Nzewi 2019; L. G. Denaro and Lin 2020; El Hajj 

et al. 2008; Paolini et al. 2006; Helder et al. 2013). However, from TOA to the BOA product, the atmospheric 

correction is more complicated to implement depending on atmospheric data availability (Pu, Landry, and Zhang 

2015; Helder et al. 2013; Nazeer, Nichol, and Yung 2014; E. F. Vermote and Kotchenova 2008; Teillet and 

Fedosejevs 1995; Xu 2006). It needs to quantitatively measure the multiple scattering and absorption due to air 

molecule and gaseous components, especially for aerosols in the visible region of the electromagnetic spectrum 

(Pinto, Jing, and Leigh 2020; Pu, Landry, and Zhang 2015). Some of the atmospheric corrections have been proposed. 

Those using radiative transfer algorithm and atmospheric characterization data quantitatively account for the best 

result to automatically correct large optical images (E. Vermote et al. 2016; Caselles and Lóópez Garc Ĺ A 1989). 

However, the evaluation on the methodology is evaluated by some researchers that the BOA product still less accurate 

or unreliable, especially in visible spectrum due to aerosol optical thickness (AOT) (Claverie et al. 2015; 2018).  

Those using radiometric and atmospheric corrections successfully reduce the difference among images with their 

different basic concept. Radiometric correction is performed in TOA reflectance, in which the atmospheric effect 

remains to obscure the true object properties. In other words, a radiometric correction method is applied to TOA to 

minimize the numeric differences among images to a common radiometric level. However, the common radiometric 
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level is a relative level that cannot represent the true surface object properties. In contrast, atmospheric correction is 

performed to generate BOA reflectance, representing the absence of atmospheric scattering or absorption. Thus, BOA 

adopts the absolute method that the converted values can represent the physical object properties (Hu et al. 2011). 

However, atmospheric correction is limited by some factors and remains minor-existed atmospheric variation when 

applied to multitemporal images. It is due to many factors, such as the directional effect caused by various view 

angles from the nadir, estimation of Earth's surface by Lambertian model, and complicated atmospheric 

quantification modeling (Skakun et al. 2017; Hansen et al. 2014; E. Vermote et al. 2016). 

The motivation is to transform its remaining atmospheric variations between multitemporal images under the 

common reflectance level. The need to convert into a common reflectance level is a fundamental preprocessing 

procedure before further application analysis. Generally, in most relative correction methods, the transformation 

needs to select a reference image as a standard common radiometric level. The reference image selected is the clearest 

overall image. However, the clearest image definition is still discussed, and it is hard to define how clearest the 

reference image. The idea to transform all images into reference levels is, in other words, not a global optimal. It may 

lead to propagation error in which other images fall far from the reference. (Pan et al. 2010; Chen et al. 2014) 

considered the middle image with the minimum distance to the other target images as the reference image, which did 

not consider image quality. (Cresson and Saint-Geours 2015) adds the constraint of both the sum of the mean values 

and the sum of the standard deviations. These play an essential role in similar overall images without a reference 

image. However, their harmonization may lead to inconsistency between spectral bands.  

 

2.  Methodology 

2.1. Iterative reweighted multitemporal alteration detection 

Generalized canonical correlation analysis (GCCA) is the extension of CCA, detecting PIFs from multitemporal 

images simultaneously. GCCA-based MAD can be called as original GCCA method or multitemporal MAD 

(MMAD).  In the literature, several methods exist to find amount components such as maximization of a function of 

correlations, maximization of covariances' function, and the combination of correlations and covariances. The 

maximization of a function of correlations, consists of three criteria, namely summation of correlation method 

(SUMCOR), the summation of squared correlation method (SSQCOR), and summation of absolute values of the 

correlation method (SABSCOR). In this study, SUMCOR is the main part of defining PIFs to find their maximum 

correlation. Consider that a block of random vectors  is defined in the previous subchapter 2.2.2 that have the 

dimensional matrix , where s is the spectral band number  and  is the intensities .  

The corresponding non-random vectors  is the eigenvectors with the dimension  derived 

from . In the multitemporal images, the definition of variable  can be identified as  and  where 

 with the condition . In an implementation, SSQCOR is equal to square and SABSCOR is 

equal to absolute which can be used to find the closeness of the model, and SUMCOR is equal to identity that can be 

used for finding maximization of positively correlated components denoted as: 

, (1) 

subject to the constraints ,   . 

In equation 1, the scheme of networking multitemporal image dates is defined by the variable  if  and  

are connected and  if not connected. Reformulated Equation 1 as: 

 

(2) 

subject to the constraints , 

where , , and . After defining the algorithm of 

maximization of correlation, the aid of Lagrangian function is needed to optimize the correlation as described below: 
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(3) 

where  are the Lagrange multiplier corresponding to  of the linear combination of 

non-random values or outer weight vectors. Therefore, the canceling derivative concerning  and  of the 

Lagrange yields the following stationary equations: 

 

(4) 

The stationary Equation stated in Eq. (4) has no analytical solution. The other way to optimize the problem (1) is to 

build a monotonically convergent algorithm. The primary purpose of building monotonically convergent is to 

determine the Eigenvectors corresponding to their linear combination. In addition to building monotonically 

convergent, the PLS algorithm introduced by Wold in 1985 is done to substitute the inner component. The inner 

component  is useful to simplify the equation for GCCA expressed as: 

 

(5) 

Therefore, by the use of inner component , the stationary Equation in (4) can be simplified using the following 

expression: 

 

 

(6) 

Further, the outer weight vectors  can be generated by substituting of inner component (5) respected to their 

constraints (1), then the stationary Equation becomes (4) stated as follows: 

 

 

 

(7) 

Therefore, the equation above can be reconstructed for multitemporal purpose simultaneously described as: 

 

(8) 

The termination criterion,  will converge at a certain point using the Gauss-Seidel algorithm for solving a system of 

linear equations and several other iterative algorithms such as the Wold and Hanafi's PLS algorithm, supposing that 

 where  is iteratively replacing the previous value. 

2.2. Constrained Harmonization 
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This method is also called as the referenceless method harmonization. Assume that the robust PIFs are already 

extracted. The following statistical parameters, such as mean and standard deviation, are used for the extracted PIFs. 

The key in globally optimized normalization is to optimize the mean and standard deviation difference close to zero 

using linear least-square optimization. The linear parameters of variation between images, before and after processing, 

can be described in . Thus, the value of the mean of the image before and after normalization is 

described as: 

 

(9) 

 

Similarly, the value of the standard deviation before and after normalization is described as:  

 

 

(10) 

 

where ,  and  are the means and standard deviation values before and after normalization, 

respectively. Consider that the images  and  are at the same location and captured at different times. Therefore, the 

mean and standard deviation are expressed as , , , and . Similarly, to the coefficients of images  and  

are  and , respectively. The difference of mean and standard deviation after normalization should 

have corresponded to the equal value as the Equation below: 

 

 

(11) 

However, Eq. 11 is not working in the ideal condition. The images taken under different dates remain biased. Thus, a 

little difference still exists, and the Equation is reformulated as: 

 

 

(12) 

where  are the difference between the mean and standard deviation exist at the time  and  after 

normalization, respectively. Then, the normalization condition can be reformulated as: 

 

 

(13) 

According to the least-square optimization, the optimal condition for finding the minimal error is stated as 

, where, 

 

 

 

(14) 
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For the matrix , 

 
(15) 

Since the number of the Equation is two for bitemporal images, and the unknown parameters are four, that is, 

 and . Therefore, the constraints are required to generate four equations for the four outputs 

parameters of bitemporal images. The constraint  is regenerated for the least-square  in which 

the Equation becomes: 

 (16) 

hence the least-square becomes: 

 (17) 

From the temporal-constraints: 

 

 

(18) 

The temporal-constraint employed in this Equation are to close the values before and after normalization. Then,  is 

updated as: 

 (19) 

Corresponds to the matrix  is updated as: 

 

(20) 

Thus, after solving the Equation , the coefficients are retrieved at the 

minimum error. The equations above are applied to the bitemporal images  and . However, it also can be used for 

multitemporal images , etc. 

 
3.  RESULTS AND DISCUSSIONS 

3.1. Datasets 

Three study areas that contain various landscapes, including an agricultural and lake, urban, forest as shown in Table 

1, were selected for method evaluation. Thus, three datasets in each location are tested in purpose with multitemporal 

images simultaneously. In dataset I, each of the year data from 2013 to 2016 are acquired under a similar season. The 

heterogeneous data, including forest, urban, agricultural, are chosen in the study, similar to dataset III with the higher 

image resolution. In the dataset II and IV, the water bodies are included in a scene with vegetation in the major 

coverage, but dataset IV have significant cloud covers than dataset II. Dataset IV is chosen so that the PIFs quality is 

easily understood with significant changes from multitemporal images. 
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Table 1. Study areas and tested data 

Dataset # 

 
I 

 
II 

 
III 

Location 

(path, row) 

Indonesia 

(124, 062) 

France 

(201, 033) 

Taiwan 

(117, 043) 

Acquisitions date 

2015/06/26 

2016/12/05 

2017/08/02 

2019/09/09 

2017/08/13 

2018/07/31 

2019/05/31 

2020/09/06 

2013/04/16 

2016/06/27 

2017/08/17 

2018/09/21 

Landscapes Agricultural Heterogeneous Vegetation 

Image size 2000 x 2000 3000 x 3000 1900 x 1800 

 

3.2. PIFs extraction 

In the framework of IRMMAD, the computation of covariance matrix and temporal weighting is easily affected when 

there are significant land cover changes or cloud existence in multitemporal images. Compared to the original 

MMAD, the initial weight is set to 1 for all pixels that hardly separate between PIFs and non-PIFs. The IRMMAD 

uses spectral angle noticed to be suitable for initial weight. The extracted PIFs are used in reflectance harmonization 

and evaluation. Therefore, a quantitative assessment is necessary to figure out the quality of the extracted PIFs. This 

quality is calculated by utilizing Pearson’s correlation coefficient, which is commonly used to measure the linear 

correlation between two variables. The range of this coefficient is [-1,1], where 1 represents the strongest positive 

correlation, -1 denotes the strongest negative correlation, and 0 indicates no correlation. 

 

Table 2. PIFs quality of each multitemporal image datasets 

Band # 
PIFs Quality 

Dataset I Dataset II Dataset III 

1 0.89691 0.92957 0.77121 

2 0.90503 0.94263 0.77241 

3 0.91943 0.93674 0.80709 

4 0.87373 0.95020 0.82367 

5 0.88526 0.83781 0.87946 

6 0.91533 0.95932 0.89135 

7 0.90860 0.94210 0.88978 

 

3.3. Image harmonization 

In case that acceptable PIFs are extracted, the following step is a key to conduct reflectance harmonization. In the 

previous studies, the most common normalization method is using band-by-band harmonization normalization. It 

means that the generation of coefficient determinations is applied to each band to find optimal minimum errors 

independently. The coefficient determinations are certainly affecting inconsistency of spectral signature of before and 

after normalization. The number of coefficient transformations such as slope and intercept  can be constrained by such 

a factor that the spectral signature is preserved. The weighting function is applied to the reflectance harmonization, 

and then the two weighting factors are conducted in both band-by-band constrained and gradient constrained. For 

visual comparison, the multitemporal images are tested and mosaicked by the side horizontally, as seen in the 

discontinuity line or brightness shown in Figures 1 - 3. The multitemporal images used can set more than three images 

or even limitless sequentially from different dates and years to harmonize the spectral inconsistency simultaneously. 

However, for the evaluation purpose, three images are enough to test the feasibility of the proposed method. As seen 

in Figures 1 - 3, the discontinuity is apparent for the original image mosaicking. Thus, the improvement exists after 

the normalization procedure is conducted, the discontinuity line reduces to smooth or disappear. However, it is hard to 

distinguish the difference between constrained harmonization with various weighting sets visually. 
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Dataset I 

Original Image 

Temporal harmonization 

  

   

Temporal and spectral harmonization 

   

   

Figure 1. Result of Dataset II. Top: 1st column is original tested images (mosaicked to be a composed image); 2nd and 

3rd columns are band-by-band harmonization result with  is equal to 0.1 and 1 respectively. Bottom: 1st, 2nd, 3rd are 

constrained harmonization results of the proposed method with  is continuously set to 0.1, 0.3, and 0.7, 

respectively. 

 

 

Dataset II 

Original Image 

Temporal harmonization 
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Temporal and spectral harmonization 

   

   

Figure 2. Result of Dataset III. Top: 1st column is original tested images (mosaicked to be a composed image); 2nd and 

3rd columns are band-by-band harmonization result with  is equal to 0.1 and 1 respectively. Bottom: 1st, 2nd, 3rd are 

constrained harmonization results of the proposed method with  is continuously set to 0.1, 0.3, and 0.7, 

respectively. 

 

 

Dataset III 

Original Image 

Temporal harmonization 
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Temporal and spectral harmonization 

   

   

Figure 3. Result of Dataset IV. Top: 1st column is original tested images (mosaicked to be a composed image); 2nd and 

3rd columns are band-by-band harmonization result with  is equal to 0.1 and 1 respectively. Bottom: 1st, 2nd, 3rd are 

constrained harmonization results of the proposed method with  is continuously set to 0.1, 0.3, and 0.7, 

respectively. 

 

4.   CONCLUSSION 

The study presents the constrained harmonization normalization method, generating better spectral consistency and 

harmonization quality than the related method. The main part of the proposed method is addressed on the PIFs 

extraction and the harmonization. In terms of PIFs extraction, iterative reweighted multitemporal multivariate 

alteration detection (IRMGCCA) is the best method considering spectral weighting and temporal weighting 

iteratively to extract PIFs. Once the PIFs are extracted using IRMGCCA, a normalization to obtain coefficient 

transformation is required to process harmonization. The disadvantage of the temporal harmonization is that spectral 

inconsistency may happen due to preservation in temporal-domain only. The novel constrained harmonization is 

proposed to perform normalization with optimal results in which both temporal consistency and spectral consistency 

are satisfied. In the experiment, the comparison of three on-demand level-2 Landsat 8 OLI images were tested and 

show that the proposed method results the consistency in the spectral signature. 
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