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ABSTRACT: In various advanced agriculture activities called smart agriculture, we focus on three-dimensional 

measurements for farm mapping and machine control. We also focus on precise point positioning real-time kinematic 

systems, such as Global Navigation Satellite System (GNSS) positioning with submeter-level augmentation services 

(SLAS), centimeter-level augmentation services (CLAS), and multi-GNSS advanced demonstration tool for orbit and 

clock analysis (MADOCA) to improve the efficiency of precise positioning using the Quasi-Zenith Satellite System. 

In our study, we selected a farm as an experiment area to acquire point clouds and position data of cultivation works 

before sowing soybeans. We used a low-price light detection and ranging device with a multifrequency GNSS. 

Through our experiment, we evaluated the positioning performance of SLAS, CLAS, and MADOCA for point cloud 

acquisition. Moreover, we confirmed that our methodology can reconstruct point clouds from a tractor. 

 

1.  INTRODUCTION 
 
In the agriculture field, many farms have begun activities including satellite remote sensing, aerial remote sensing 

using unmanned aerial vehicles, Internet of Things (IoT) devices, and autonomous farm machines to improve the cost 

and efficiency of farming works. Various advanced agricultural activities are covered in smart agriculture and IoT 

applications for smart agriculture can be classified into seven categories: smart monitoring, smart water management, 

agrochemicals applications, disease management, smart harvesting, supply chain management, and smart agricultural 

practices (Friha et al., 2021). In addition, smart agriculture uses various types of agricultural sensors such as location-

based sensors, optical sensors, and temperature-based sensors (Maddikunta et al., 2021). Thus, we focus on the three-

dimensional (3D) measurement and mapping for farm and sensor data management and machine control. 

Autonomous farm machines mainly use real-time kinematic Global Navigation Satellite System (RTK-GNSS) 

positioning data, thus, RTK-GNSS positioning is required for precise position data acquisition for agriculture 

automation. In rural areas, however, a base station and stable communication environments should be prepared to 

achieve precise and continuous RTK-GNSS positioning. Therefore, we focus on submeter-level augmentation 

services (SLAS), centimeter-level augmentation services (CLAS), and multi-GNSS advanced demonstration tool for 

orbit and clock analysis (MADOCA) to improve the efficiency of precise positioning using a Quasi-Zenith Satellite 

System (QZSS). After the official operation of the four quasi-zenith satellites, L6 centimeter-level augmentation 

signal (L6D-CLAS), L6 multi-GNSS advanced demonstration tool for orbit and clock analysis signal (L6E-

MADOCA), and a QZS safety confirmation service (Q-ANPI) were implemented (Namie et al., 2021). 

We also focus on 3D measurement with CLAS from farming machines to acquire point clouds in farming works. We 

have proposed a scan matching for multilayer light detection and ranging (LiDAR) (i.e., 3D LiDAR) data registration 

with RTK-GNSS positioning and geometric constraints (Nakagawa et al., 2020). Based on this approach, we apply 

CLAS as precise point positioning-RTK (PPP-RTK) with LiDAR for 3D measurement. In this study, we selected a 

farm as an experiment area to acquire point clouds and position data of cultivation works before sowing soybeans. 

Through our experiment with low-price LiDAR and multifrequency GNSS devices, we evaluate the positioning 

performance of SLAS, CLAS, and MADOCA for point cloud acquisition. Moreover, we confirm that our 

methodology can reconstruct point clouds from a tractor and tractors’ activities. 

 

2.  METHODOLOGY 

 

Mobile mapping systems generally use LiDAR, GNSS positioning, and inertial measurement unit (IMU) data to 

generate point clouds. Alternatively, our methodology generates point clouds without IMU data. Our proposed 

methodology consists of synchronized data acquisition, initial point cloud registration, fine registration, and tractor 

activity estimation, as shown in Figure 1.  
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Figure 1. Proposed methodology 

 

First, synchronized LiDAR and GNSS data were acquired. The use of a multilayer LiDAR and RTK-GNSS device is 

required for our methodology. Moreover, point clouds obtained by LiDAR should have a timestamp for each scanning. 

When a LiDAR device is mounted on a platform without a direct connection to RTK-GNSS devices, the device should 

have an additional GNSS antenna for precise timing. 

Second, in the initial point cloud registration, the driving status and azimuth data were estimated from acquired GNSS 

positioning data. Driving status, such as stopping and running, can be estimated from differences in temporal GNSS 

position data. When RTK-GNSS positioning is applied for driving status estimation, running status can be 

distinguished from stopping status with a threshold value such as 3 cm/sec, because the positioning accuracy is 

approximately within 3 cm. Next, azimuth data were estimated from temporal GNSS positioning data during the 

operation of the tractor as a driving direction for initial point cloud registration before LiDAR scan matching 

processing. After the azimuth estimation, the LiDAR position is estimated using the azimuth data and offset distances 

between the GNSS antenna and LiDAR. Then, point clouds are integrated using estimated azimuth and LiDAR 

position data as an initial registration, as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Initial point cloud registration 

 

Third, in the fine registration, the initial point clouds are refined through orientation adjustment steps consisting of 

roll, pitch, height, and yaw adjustments. In our methodology, rotation data are estimated from LiDAR scan matching 

instead of IMU data acquisition. Moreover, in mobile mapping with low-price LiDAR and RTK-GNSS, horizontal 

position data obtained with GNSS are enough to be used as position data for point cloud registration. However, the 
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height data are not enough to be used for point cloud registration. Thus, roll, pitch, yaw, and height are adjusted. 

In LiDAR scan matching processing, first, dense point clouds are generated from base point clouds, as shown in 

Figure 3. When dense point clouds are used for LiDAR scan matching, we usually apply an approach to find the 

closest points such as the iterative closest point (ICP) algorithm. However, when sparse point clouds are used for 

LiDAR scan matching, the ICP finds matched points with high scores even though no corresponded points exist. Thus, 

in our methodology, we apply an interpolation of base point clouds to prepare corresponded points. Next, point clouds 

are divided into horizontal and vertical surfaces, as shown in Figure 4. Point clouds of horizontal surfaces are used 

for roll and pitch angle adjustment processing, while point clouds of vertical surfaces are used for yaw angle 

adjustment processing. When no vertical objects exist, azimuth data estimated from GNSS data are directly used as 

yaw data without yaw adjustment processing. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Point cloud interpolation for fine registration 

 

 

 

 

 

 

 

 

 

 

Figure 4. Point cloud division for fine registration 

 

Fourth, the tractor’s activities are reconstructed with estimated driving and plow status onto rectified point clouds 

after status estimation. The plow status is estimated using temporal range images generated from LiDAR data. When 

a LiDAR device is mounted on a tractor at a position where a plow is scanned, the plow’s activity can be measured 

using LiDAR. Figure 5 shows an example of plow up and down. The upper image a shows a depth image at a plow-

up scene. The horizontal axis indicates scanning direction, and the vertical axis indicates scanning channels. The 

center image b shows a depth image at a scene plow-down. The bottom image c shows a temporal graph of plow 

positions. The horizontal axis indicates scenes, and the vertical axis indicates distance values from the LiDAR device 

to the plow. 
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Figure 5. An example of plow up and down 

3.  EXPERIMENTS 

 
We selected the Iwaki farm (Otawara, Tochigi, Japan) as an experimental area to evaluate the 3D measurement 

methodology using farming machines in farming works. LiDAR and GNSS positioning data were acquired during 

cultivation works before sowing soybeans. We used low-price multilayer LiDAR and multifrequency GNSS devices. 

The LiDAR device (VLP-16, Velodyne) was mounted on a tractor (MR70, Kubota) in a diagonal down-backward 

manner to acquire point clouds of fields during cultivation works, as shown in Figure 6. The GNSS antenna (GPS-

703-GGG-HV, NovAtel) was mounted on the bonnet of the tractor. After our preliminary experiments, we selected 

the bonnet as a better position for stable GNSS signals receiving. We acquired SLAS data with ZED-F9P (u-blox), 

CLAS data with AsteRx4 (Septentrio), and MADOCA data with Owl-TypeB (LiGHTHOUSE). We also acquired 

RTK-GNSS positioning data with ZED-F9P (u-blox) as the reference data. In our experiments, we evaluated the 

positioning performance of SLAS, CLAS, and MADOCA. Moreover, we used CLAS data for point cloud generation 

to evaluate our methodology. Then, we represented the tractor’s activities with estimated driving and plow status 

using temporal range images generated from LiDAR data. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Measurement system 

 

4.  RESULTS 

 

4.1 GNSS positioning 
 
First, we have confirmed that the efficiency of positioning was improved because no preparation needs reference 

station installment works in SLAS, CLAS, and MADOCA. Next, we evaluated the accuracy of positioning with SLAS, 

CLAS, and MADOCA. RTK-GNSS positioning results were used as reference data to compare with SLAS, CLAS, 

and MADOCA positioning results observed during 2,200 sec in the farm area. The relative accuracy evaluation results 

of SLAS with the reference data are shown in Table 1, the results of CLAS with the reference data are shown in Table 

2, and the results of MADOCA with the reference data are shown in Table 3. In addition, the trajectory data are shown 

in Figure 7. 

 

Table 1. Relative accuracy evaluation (SLAS) 

 

 

 

 

 

 

Table 2. Relative accuracy evaluation result (CLAS) 

 

 

 

 

 

 

Table 3. Relative accuracy evaluation result (MADOCA) 

 

 

 

 

3D  [m ] 2D  [m ] X [m ] Y [m ] Z [m ]

A verage 0.2708 0.2191 -0.1972 -0.0204 -0.1184

Standard deviation 0.2272 0.1583 0.1547 0.0991 0.1946

R M SE 0.3534 0.2703 0.2506 0.1012 0.2277

3D  [m ] 2D  [m ] X [m ] Y [m ] Z [m ]

A verage 0.0532 0.0119 -0.0008 -0.0020 0.0450

Standard deviation 0.0243 0.0069 0.0071 0.0116 0.0347

R M SE 0.0585 0.0138 0.0071 0.0118 0.0569

3D  [m ] 2D  [m ] X [m ] Y [m ] Z [m ]

A verage 0.5632 0.3122 0.2120 0.0962 0.3515

Standard deviation 0.2530 0.1348 0.1606 0.1888 0.3769

R M SE 0.6174 0.3400 0.2659 0.2119 0.5153

2 . 27  m2 . 62  m
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Figure 7. GNSS positioning results 

 

4.2 LiDAR scan matching 
 
We extracted the tractor’s running scenes (7,132 scenes) from all scenes (22,000 scenes, 2,200 sec) in the farm area. 

The processing time was 7478.02 sec (Intel Core i7-10710U, 1.10 GHz), including a file import and export for 

75,981,750 points. The result of scan matching was 0.0072 m (root-mean-square error [RMSE]). The integrated point 

clouds are shown in Figure 8. We also extracted the tractor’s running scenes (500 scenes) in the road section to 

evaluate the versatility of methodology with the same processing environment. The result of scan matching was 

0.0135 m (RMSE). The integrated point clouds are shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Integrated point clouds (farm area)                           Figure 9. Integrated point clouds (road area) 
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4.3 Tractor’s activity reconstruction 
 
The tractor’s activities were represented with estimated driving and plow status using temporal range images 

generated from LiDAR data, as shown in Figure 10. Blue points indicate LiDAR points in a scene. Red points indicate 

cultivated paths. Although GNSS positioning data can represent the tractor’s path, cultivated areas cannot be 

measured. Alternatively, the result shows that precise cultivated areas can be estimated from LiDAR data used as 

attribute data on a base map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Tractor activity reconstruction 

 

 

5.  CONCLUSION 

 

In this paper, we proposed a scan matching system for multilayer LiDAR data registration with RTK-GNSS 

positioning and geometric constraints. We selected a farm as an experiment area to acquire point clouds and position 

data of cultivation works before sowing soybeans and used low-price LiDAR and multifrequency GNSS devices. 

Through our experiment, we evaluated the positioning performance of SLAS, CLAS, and MADOCA for point cloud 

acquisition. Moreover, we confirmed that our methodology can reconstruct point clouds from a tractor’ activities. In 

our future works, although we used RTK-GNSS positioning data as true values, we will conduct experiments on 

accuracy evaluation using ground control points and processing speed improvement for real-time processing. 
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