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ABSTRACT: This paper presents the speckle filtering and physical scattering decomposition for the ALOS-2 

PALSAR-2 fully polarimetric mosaic. The processing steps include 1) multi-looking, 2) speckle filtering, 3) 

geocoding, 4) mosaicking, and 5) model-based polarimetric decomposition. Another variant of iterative bilateral filter, 

called gravitational filter, was assessed for polarimetric speckle filtering. Benchmarking against the refined Lee filter 

and the boxcar filter, the experimental results on the ALOS-2 PALSAR-2 polarimetric data confirmed the effective-

ness of the gravitational filter in speckle reduction and image feature retention. Prior to the mosaicking, the geodetic 

coordinates of selected control points, which were given based on the Geodetic Reference System 1980, were first 

converted into the Universal Transverse Mercator map coordinates. Subsequently, the ALOS-2 PALSAR-2 speckle-

filtered data were geocoded by using second-order polynomial equation and least squares method. For the polarimetric 

scattering decomposition, an iterative multistage four-component decomposition was applied to the ALOS-2 

PALSAR-2 polarimetric mosaic. From the decomposition result, a large amount of negative power pixels over 

vegetated areas were reduced. The total number of the remaining negative power pixels was only 0.006%.   

 

1.  INTRODUCTION 
 

Since the launch of Seasat in year 1978, spaceborne synthetic aperture radar (SAR) has been an integral part of remote 

sensing for earth observation. Being an active imaging system, SAR can operate both day and night under all weather 

conditions. Moreover, it can also provide a vast number of cloud-free remotely sensed data. To date, there exist many 

published works dealing with geocoding and mosaicking of spaceborne SAR imagery. Among the relevant papers 

are Curlander (1984), Curlander et al. (1987), Kwok et al. (1990), Schreier et al. (1990), Kwoh et al. (1997), Shimada 

and Isoguchi (2002), Shimada and Ohtaki (2010), Antropov et al. (2012), Syrris et al. (2020), etc. The generated 

regional- and global-scale SAR mosaics present very meaningful synoptic views of the Earth’s landmass.  

With the realisation of fully polarimetric SAR (PolSAR) imaging systems, polarisation diversity has received a 

tremendous boost and becomes common in spaceborne SAR, for instances, ALOS-1, ALOS-2, RADARSAT-2, 

SAOCOM, COSMO-SkyMed, etc. The acquired fully PolSAR data offer interesting and valuable opportunities in 

understanding and quantifying physical interaction behaviours between radar waves and the illuminated Earth’s 

surface through the available scattering matrix or polarimetric covariance matrix (Cloude, 2009; Lee and Pottier, 

2009; van Zyl and Kim, 2011; Yamaguchi, 2020). However, speckle appears inherently in the PolSAR data due to 

random interference of coherent echoes from many elementary scatterers within an illuminated resolution cell. The 

presence of speckle noise can degrade the reliability of the extracted physical scattering properties and complicate 

the interpretation of the fully PolSAR data. 

This paper examines a recently proposed polarimetric speckle filter, called gravitational filter, for an improved 

retrieval of physical scattering mechanisms from the ALOS-2 PALSAR-2 fully polarimetric mosaic. The ALOS-2 

PALSAR-2 test data were described in Section 2. Section 3 presents the methodology of this research study. The 

obtained speckle filtering and polarimetric scattering decomposition results are discussed in Section 4. Finally, 

conclusions are drawn in Section 5. 

 

2.  DATA ACQUISITION 

 

Covering the whole area of Singapore, two ALOS-2 PALSAR-2 high-sensitive quad-polarisation data (level 1.1), 

which were provided by the Japan Aerospace Exploration Agency (JAXA), were employed in this study. Table 1 lists 

the details of the two single-look complex (SLC) test data, which were collected on the descending orbit. Each test 

dataset contains four image files, one leader file, one volume directory file, and one trailer file. The corresponding 

product format description can be found at https://www.eorc.jaxa.jp/ALOS-2/en/doc/format.htm. 
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Table 1: Specifications of ALOS-2 PALSAR-2 test data 

Scene identifier ALOS2105433590-160506 ALOS2107503590-160520 

Observation date 6th May 2016 20th May 2016 

Scene centre time 04:50:36.372 UTC 04:50:36.517 UTC 

Beam number FP6-6 FP6-5 

Radar wavelength 24.24525 cm 

Software identifier 2.025 2.028 

Incidence angle at scene center 36.501 33.861 

Line spacing (m) 2.7996337 3.2152384 

Pixel spacing (m) 2.8608445 2.8608445 

 

3.  METHODOLOGY 

 
As shown in Figure 1, the processing tasks comprise 1) multi-looking, 2) speckle filtering, 3) geocoding, 4) 

mosaicking, and 5) physical scattering decomposition. Each processing step is explained further in the following 

subsections. 

 

 

Figure 1: Outline of methodology, where GEC means geocoded ellipsoid corrected. 

 

3.1 Multi-looking 

 

After symmetrising the cross-polarised responses, the complex vector of each pixel in the ALOS-2 PALSAR-2 single-

look slant-range data is given by 

 s = c [

IHH + jQ
HH

{(IHV + IVH) + j(Q
HV

 + Q
VH

)} √2⁄

IVV + jQ
VV

] , (1) 

where j = √−1.  The 32-bit in-phase and quadrature components are represented separately by I and Q. The scalar c 

in (1) equals to 10(CF  32)/20, where CF is the calibration factor. As retrieved from the radiometric data record in the 

leader file, the CF takes a value of 83. A four-look qq (q = 3) polarimetric covariance matrix was formed in this 

study by taking 22 neighbouring pixels: 

  C = 
1

L
 ∑ sisi

*T,

L

i = 1

 (2) 

where L refers to the number of looks (i.e., L = 4). The superscripts  and T denote the complex conjugate and 

transpose, respectively.   

 

3.2 Speckle Filtering 

 

As named by Tomasi and Manduchi (1998), bilateral filter is a locally adaptive weighted averaging filter, which can 

be applied in an iterative way. Its filtering weight takes spatial closeness and radiometric similarity into account. 

Often the filtering weight is derived from an exponential family, e.g., normal distribution. Such a bilateral filter is 

also known as nonlinear edge preserving Gaussian filter, which was proposed by Aurich and Weule (1995). The 

extensions and applications of the bilateral filter for polarimetric speckle filtering can be found in Alonso-González 

et al. (2013), D’Hondt et al. (2013), Yang et al. (2014), Liu et al. (2017), etc.  

Lee et al. (2021) recently introduced another type of iterative bilateral filter, called gravitational filter, for speckle 

reduction in multi-look PolSAR data. As inspired by Newton’s law of universal gravitation, a force of attraction 
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between two image pixels is formulated in polarimetric-spatial domain based on the following principle: directly 

connected like pixels attract more; distantly separated unlike pixels attract less. Thus, the attractive force is given by  

  f = k
s(C1, C2)

r2
, (3) 

where k is a constant of proportionality. From (3), it is obvious that the attractive force is directly proportional to the 

polarimetric similarity s(C1, C2) and inversely proportional to the Euclidean distance r between the two pixels. 

The polarimetric similarity measure can be obtained by exploiting the eigenvalues of complex multivariate F 

matrix C1C2
1 or C2C1

1 in two different forms, namely, Roy’s largest eigenvalue and Hotelling-Lawley trace. For 

the former, the corresponding similarity measure is given by 

 s(C1, C2) = R2 (4) 

with 

 R = max{ max(C1C2
1), max(C2C1

1) }, (5) 

where max denotes the maximum operator and max refers to the largest eigenvalue. Alternatively, the similarity 

measure based on the latter is in form of  

 s(C1, C2) = T2 (6) 

with 

 T = max{ q1 tr(C1C2
1), q1 tr(C2C1

1) }. (7) 

The operator tr represents the matrix trace. Both the Roy’s largest eigenvalue and the Hotelling-Lawley trace turn 

into the well-known intensity ratio (Touzi et al., 1988) when applying to intensity data (i.e., q = 1).  

In the gravitational filter, the bilaterally filtered covariance matrix Cout is expressed as 

 Cout = (f
o
Co+ ∑ f

i
Ci

N1

i=1

) (f
o
+ ∑ f

i

N1

i=1

)⁄ . (8) 

The matrix Co is the covariance matrix of the currently processed pixel (or the central pixel in other words), while Ci 

refers to the covariance matrix of other pixels within the local window. The variable N denotes the total number of 

pixels within the test window. The filtering weight fi is the attractive force as defined in (3) with s(Co, Ci), while fo is 

given by  

 fo = max{ f1, f2,…, fN1 }. (9) 

The weighting increases with an increased similarity, but it is in a reverse way with respect to the spatial distance.  

Since the gravitational filter is iterative, it can be written in time domain t as 

 Co
t+t = Co

t  + 
t

f
o

  t
+ ∑ f

i

  tN1
i=1

∑ f
i

  t(Ci
t  Co

t )
N1

i=1

, (10) 

where t = 1. The reader may compare (10) with the PolSAR anisotropic diffusion (Ma et al., 2015, p. 1043; Ma et 

al., 2018, p. 746). Notably, the anisotropic diffusion uses only a small and directly connected neighbourhood in its 

filtering. 

In this study, the gravitational filter was applied for speckle reduction in the four-look ALOS-2 PALSAR-2 fully 

polarimetric data and benchmarked against two selected existing PolSAR filters, namely 1) refined Lee filter and 2) 

boxcar filter. Further analysis of the speckle filtering results is given in Section 4.  

 

3.3 Geocoding and Mosaicking 

 

As defined in Curlander and McDonough (1991, p. 371), geocoding is a geometric transformation process of an 

image data into map grid, while mosaicking refers to the process of assembling multiple independently geocoded 

images into a single frame. Prior to the mosaicking, the geodetic coordinates (i.e., longitude and latitude) of selected 

control points, which were provided based on the Geodetic Reference System 1980, were first converted into the 

Universal Transverse Mercator map coordinates (i.e., easting and northing). The ALOS-2 PALSAR-2 speckle-filtered 

polarimetric data were subsequently geocoded by using second-order polynomial equations: 

 X = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 (11) 

and 

 Y = b0 + b1x + b2y + b3xy + b4x
2 + b5y

2, (12) 

where the map coordinates x and y refer separately to the easting and northing. The image coordinates X and Y are 

the column and row numbers, respectively. Each polynomial equation contains six unknown coefficients. Since the 

number of the selected control points was more than the number of the unknown polynomial coefficients in this study, 
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least squares method was then employed to solve the overdetermined system for the latter.  

After geocoding with nearest neighbour resampling method, a common pixel of the two partially overlapped 

ALOS-2 PALSAR-2 fully polarimetric images was chosen for determining the offsets in X- and Y-axis. The two 

geocoded images were then assembled through a straightforward shifting in both the axes. Figure 2 presents the 

ALOS-2 PALSAR-2 speckle-filtered polarimetric mosaic over Singapore, where the HH, HV, and VV intensities are 

displayed in the red, green, and blue (RGB) colour space. The filtering was conducted by using the two-iteration 

gravitational filter based on the Hotelling-Lawley trace with a 77 window. Note that only diagonal elements in the 

polarimetric covariance matrix were employed for computing the filtering weight in (3).   

 

 

Figure 2: ALOS-2 PALSAR-2 speckle-filtered polarimetric mosaic. 

 

3.4 Physical Scattering Decomposition 

 

The retrieval of physical scattering properties of different land cover features from fully PolSAR data has long been 

studied. A three-component scattering model was developed by Freeman and Durden (1992, 1998) for multi-look 

PolSAR data. Their model involves physical fitting of a combination of double-bounce, surface, and volume 

scattering mechanisms. Yamaguchi et al. (2005) extended the Freeman-Durden model by adding helix scattering. 

One well-known problem associated with the model-based decomposition is the presence of negative scattering 

powers, which is inconsistent with the actual scattering phenomenon. To tackle this problem, many different solutions 

have been proposed and can be found in An et al. (2010), van Zyl et al. (2011), Lee et al. (2014), etc.  

Lee et al. (2019) presented an iterative multistage polarimetric decomposition, which is inspired by the 

generalised odd-bounce and double-bounce scattering models (Chen et al., 2014), for reducing the negative power 

pixels. Together with the use of two roll-invariant volume scattering models, the iterative multistage decomposition 

combines both the three- and four-component decompositions. Its processing steps, which operate on a pixel-by-pixel 

basis, are shown in Figure 3. The reader is referred to Lee et al. (2019) for the mathematical details of the proposed 

iterative multistage decomposition. In this study, the iterative multistage decomposition was applied to the ALOS-2 

PALSAR-2 polarimetric mosaic. The obtained decomposition results are discussed in Section 4.  
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Figure 3: Iterative multistage polarimetric decomposition. 

 

 

4.   RESULTS AND DISCUSSION 

 
4.1 Speckle Filtering  
 
For speckle filtering in the four-look ALOS-2 PALSAR-2 fully polarimetric data, the gravitational filter was 

examined by using three different window sizes ranging from 55 to 99. Moreover, the refined Lee filter and the 

boxcar filter were selected for comparisons. Figure 4 presents the speckle filtering sub-scenes over Kim Kim River, 

Johor. Visually, both the refined Lee filter and the gravitational filter show their good capabilities in reducing speckle 

and retaining meaningful image features, such as edges, lines, point-like targets, etc. The boxcar filter with a larger 

window size (i.e., 77 window) smears out the image features expectedly.  

Four essential aspects of the filtering performance were investigated: 1) speckle reduction, 2) image feature 

retention, 3) polarimetric property preservation, and 4) computational efficiency. In overall, the performances of the 

gravitational filter in the four aspects were consistent with the previous findings given in Lee et al. (2021). The 

gravitational filter performed well in the first two aspects, but at the expense of an increased computational load. 

Table 2 and Table 3 tabulate the averaged covariance matrix elements of two selected regions containing forest and 

oil palm trees, respectively. As pointed out previously in Lee et al. (2021), a radiometric bias was observed when the 

full covariance matrix was employed in the gravitational filtering. In both the tables, the biases can be noticed 

particularly for the HH and VV intensities (i.e., c11 and c33), where the differences are within 0.5 decibels. Based 

on the tabulated intensity values, the use of only diagonal matrix elements for computing the attractive force in (3) 

can, however, help in reducing the biases. 

 

   

Table 2: Averaged covariance matrix of forest before and after filtering with a 77 window  

 c11 c22 c33 (c12) (c12) (c23) (c23) (c13) (c13) 

Unfiltered 0.171 0.094 0.154 -0.001 0.001 -0.001 0.000 0.047 -0.002 

Boxcar filter 0.171 0.094 0.154 -0.001 0.000 -0.001 0.000 0.047 -0.002 

Refined Lee filter 0.169 0.093 0.152 -0.001 0.000 -0.001 0.000 0.046 -0.002 

Gravitational filter with Roy’s largest eigenvalue (number of iterations = 2) 

Full matrix 0.160 0.088 0.144 -0.001 0.000 -0.001 0.000 0.043 -0.002 

Diagonal elements only 0.166 0.092 0.149 -0.001 0.000 -0.001 0.000 0.045 -0.002 

Gravitational filter with Hotelling-Lawley trace (number of iterations = 2) 

Full matrix 0.161 0.088 0.144 -0.001 0.000 -0.001 0.000 0.044 -0.002 

Diagonal elements only 0.166 0.092 0.149 -0.001 0.000 -0.001 0.000 0.045 -0.002 

Note that (.) and (.) represent the real and imaginary parts, respectively. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 4: Speckle filtering results. (a) ALOS-2 PALSAR-2 unfiltered data with HH, HV, and VV intensities (in 

decibels) displayed in the RGB colour space. (b) Boxcar filter (33 window). (c) Boxcar filter (77 window). (d) 

Refined Lee filter (77 window). (e) Gravitational filter with Roy’s largest eigenvalue (77 window, full matrix, 

Nitr = 2). (f) Gravitational filter with Hotelling-Lawley trace (77 window, full matrix, Nitr = 2). Note that Nitr refers 

to the number of iterations. 

 

Table 3: Averaged covariance matrix of oil palm plantation before and after filtering with a 77 window 

 c11 c22 c33 (c12) (c12) (c23) (c23) (c13) (c13) 

Unfiltered 0.223 0.044 0.136 0.000 0.000 0.000 0.000 0.060 -0.017 

Boxcar filter 0.223 0.044 0.135 0.000 0.000 0.000 0.000 0.059 -0.017 

Refined Lee filter 0.220 0.044 0.135 0.000 0.000 0.000 0.000 0.059 -0.017 

Gravitational filter with Roy’s largest eigenvalue (number of iterations = 2) 

Full matrix 0.210 0.042 0.128 0.000 0.000 0.000 0.000 0.056 -0.016 

Diagonal elements only 0.217 0.043 0.132 0.000 0.000 0.000 0.000 0.058 -0.016 

Gravitational filter with Hotelling-Lawley trace (number of iterations = 2) 

Full matrix 0.211 0.042 0.128 0.000 0.000 0.000 0.000 0.057 -0.016 

Diagonal elements only 0.217 0.044 0.132 0.000 0.000 0.000 0.000 0.057 -0.016 

 

4.2 Physical Scattering Decomposition 

 

Prior to the polarimetric decomposition, the coherency matrix was obtained by linearly converting from the speckle-

filtered covariance matrix (Cloude and Pottier, 1996, p. 501). An iterative multistage four-component decomposition, 

which was previously proposed by Lee et al. (2019), was then applied to the ALOS-2 PALSAR-2 speckle-filtered 

polarimetric mosaic. Figure 2 shows an extract of the polarimetric scattering decomposition result over Pulau Ubin 

in Singapore, where the double-bounce, volume, and odd-bounce scattering powers are displayed in the RGB colour 

space. Visually, the water surface shows predominantly the odd-bounce scattering, while the volume scattering is the 

dominant scattering component over the vegetated areas. The double-bounce scattering can be partially observed over 

Johor Port, which is located at the upper-left corner.  

From the decomposition result, a large amount of negative power pixels over vegetated areas were significantly 

reduced by comparing with the Freeman-Durden three-component decomposition and Yamaguchi’s four-component 

decomposition. The total number of the remaining negative power pixels was only 0.006% (i.e., 9114 pixels). The 
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majority of the remaining negative power pixels belonged to man-made objects. Table 4 lists the number of negative 

power pixels and incorrect positive power pixels resulting from different decomposition schemes. There were two 

different volume scattering models under study: 1) volume scattering model based on uniform distribution and 2) 

volume scattering model with total randomness. As can be seen in Table 4, the latter was found to reduce more 

negative power pixels than the former, which is similar to the previous finding in Lee et al. (2019). 

In order to study the scattering mechanisms of different land cover types, each pixel is classified by identifying 

its dominant scattering contribution. Table 5 presents the percentage of different scattering components of selected 

land cover classes. All the vegetation classes (including the mangrove forest, secondary forest, oil palm, and shrub) 

showed their dominant volume scattering. The surface scattering was the main component for the bare land, water 

surface, and runway. The Malaysia-Singapore Second Link was dominated by the double-bounce scattering. In the 

built-up 1, the buildings were perpendicular to the radar illumination and exhibited the expected double-bounce 

scattering behaviour. On the contrary, the built-up 2 was composed of oriented buildings, which made nearly 45 

from the direction of the radar illumination. The volume scattering was found to be dominant over the oriented 

buildings.  

 

 

Figure 5: Physical scattering decomposition of ALOS-2 PALSAR-2 polarimetric mosaic. 

 

Table 4: Number of negative power pixels and incorrect positive power pixels 

 Negative power pixels Incorrect positive power pixels 

Volume scattering model based on uniform distribution 

Freeman-Durden three-component decomposition 17672384 2144628 

Yamaguchi’s four-component decomposition 14329039 1414473 

Multistage four-component decomposition 3072396 - 

   

Volume scattering model with total randomness 

Freeman-Durden three-component decomposition 6027919 - 

Yamaguchi’s four-component decomposition 6140369 7706 

Multistage four-component decomposition 447254 - 

 

Table 5: Scattering mechanisms (in percent) of different land cover types 

 Number of pixels Surface Double-bounce Volume Helix Unclassified 

Bare land 5439 100.00 - - - - 

Bridge 1510 2.05 87.88 10.07 - - 

Built-up 1 8296 21.70 78.22 0.08 - - 

Built-up 2 6641 2.33 6.78 90.86 - 0.03 

Mangrove forest 21228 0.16 0.09 99.75 - - 

Oil palm 12322 12.34 - 87.66 - - 

Runway 994 91.65 1.71 6.64 - - 

Secondary forest 29516 0.02 - 99.98 - - 

Shrub  6552 0.20 - 99.80 - - 

Water 80600 100.00 - - - - 
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5.   CONCLUSIONS 

 

The speckle filtering and polarimetric scattering decomposition of the ALOS-2 PALSAR-2 fully polarimetric mosaic 

were carried out and reported in this paper. The processing steps involved 1) multi-looking, 2) speckle filtering, 3) 

geocoding, 4) mosaicking, and 5) model-based polarimetric decomposition. For the speckle filtering, the recently 

proposed gravitation-based bilateral filter was examined. Compared with the existing PolSAR bilateral filters, the 

gravitational filter is simple in concept and consists of less filtering parameters, which are needed to be tuned. Bench-

marking against the refined Lee filter and the boxcar filter, the experimental results on the ALOS-2 PALSAR-2 

polarimetric data confirmed the effectiveness of the gravitational filter in speckle reduction and image feature 

retention. For the polarimetric scattering decomposition, an iterative multistage four-component decomposition, 

which was previously introduced by Lee et al. (2019), was applied to the ALOS-2 PALSAR-2 speckle-filtered 

polarimetric mosaic. From the decomposition result, the negative power pixels over vegetated areas were largely 

reduced, where the total number of the remaining negative power pixels was only 0.006%.  
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