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ABSTRACT: This paper re-examines our previously proposed multistage four-component polarimetric 

decomposition for reducing negative power pixels, where the performance evaluation was conducted by 

using ALOS-2 PALSAR-2 fully polarimetric data. The negative power pixels over vegetated areas were 

significantly reduced. The remaining negative power pixels distributed primarily over man-made objects 

and sea. For further reduction, an iterative multistage polarimetric decomposition, which employs two 

roll-invariant volume scattering models, was subsequently developed. The derived physical scattering 

mechanisms of different land cover types were analysed and are reported in this paper. 

 

1. INTRODUCTION 

 
The retrieval of physical scattering properties of different land cover features from polarimetric synthetic 

aperture radar (PolSAR) data has long been studied since last three decades (van Zyl, 1989; Freeman and 

Durden, 1992; Cloude and Pottier, 1997). A three-component scattering model was developed by 

Freeman and Durden (1992, 1998) for multilook PolSAR data. Their model involves physical fitting of a 

combination of double-bounce, surface, and volume scattering mechanisms. Since then, the model-based 

polarimetric decomposition has received a considerable amount of attention in the literature (Yajima et 

al., 2008; Arii et al., 2011; Hong and Wdowinski, 2014; Singh and Yamaguchi, 2018). Yamaguchi et al. 

(2005) extended the Freeman-Durden model by adding helix scattering. One well-known problem 

associated with the model-based decomposition is the presence of negative scattering powers, which is 

inconsistent with the actual scattering phenomenon (Yamaguchi et al., 2005; van Zyl et al., 2008, 2011; 

An et al., 2010; Lee et al., 2014). Recently, we proposed a multistage four-component decomposition 

(Lee et al., 2018), which is inspired by the generalised odd-bounce and double-bounce scattering models 

(Chen et al., 2014), for reducing negative power pixels. Its performance was evaluated by using 

NASA/JPL AIRSAR PolSAR C- and L-band data. The experimental results showed that a large amount 

of negative power pixels over vegetated areas, such as grassland and tree cover, were reduced.  

In this paper an extended work is carried out to examine our previously proposed multistage model-

based decomposition by using ALOS-2 PALSAR-2 fully polarimetric data. Sections 2 and 3 present 

separately the Yamaguchi’s and multistage four-component polarimetric decompositions. The details of 

the ALOS-2 PALSAR-2 test data are described in Section 4. Section 5 discusses the experimental 

decomposition and scattering classification results. Finally, the conclusions are given in Section 6. 

 

2. YAMAGUCHI’S FOUR-COMPONENT POLARIMETRIC DECOMPOSITION 

 
Freeman and Durden (1992, 1998) introduced a model-fitting approach for retrieving three elementary 

scattering mechanisms, namely, surface scattering, double-bounce scattering, and volume scattering, 

from the polarimetric covariance matrix of each pixel in multilook PolSAR data. The three-component 

scattering model was extended by Yamaguchi et al. (2005) by adding helix scattering. In a further work, 

Yamaguchi et al. (2006) reformulated their four-component decomposition through the coherency matrix 

representation. 
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For the surface scattering, the first-order Bragg model is used for a moderately rough surface. Its 

scattering vector in the Pauli basis is given by 

 ks = [
BHH + BVV

BHH  BVV

0

]. (1) 

The complex values BHH and BVV are separately the reflection coefficients of HH and VV polarisations 

(Cloude and Pottier, 1996): 

 BHH = 
cos √εr  sin

2


cos  + √εr  sin
2


 , (2) 

 
BVV = 

(εr  1){sin
2
  εr (1 + sin

2
)}

(εr cos  + √εr  sin
2
)

2
 , 

(3) 

where  is the local incidence angle and r is the relative dielectric constant of the surface. The coherency 

matrix of a surface scattering response can then be obtained as follows: 

 Ts = ksks
T = [

1 β
*

0 

β | β |
2

0

0 0 0

], (4) 

where  = (BHH  BVV) / (BHH + BVV) and |  | < 1. The superscripts  and T denote separately the 

complex conjugate and transpose. | . | represents the absolute value.  

The double-bounce scattering component is modelled by scattering from a dihedral corner reflector, 

where two orthogonal surfaces can be made of different dielectric materials. Its Pauli scattering vector is 

 kd = [
RH1RH2  RV1RV2

RH1RH2 + RV1RV2

0

] , (5) 

where j = √1. The R terms represent the Fresnel reflection coefficients of the first and second surfaces. 

Thus, the coherency matrix of a double-bounce scattering is given by 

 Td = kdkd
T = [

| α |
2

α 0 

α* 1 0

0 0 0

], (6) 

where 

 α = 
RH1RH2  RV1RV2

RH1RH2 + RV1RV2

 (7) 

and |  | < 1. 

For the volume scattering, the radar returns are assumed from a cloud of randomly oriented, very thin, 

cylinder-like dipoles. By further assuming a uniform distribution for the orientation angle of the dipoles, 

the corresponding coherency matrix is expressed in Yamaguchi et al. (2006, p. 293) as 

 Tv = 
1

4
[
2 0 0 

0 1 0

0 0 1

] . (8) 

For the roll-invariant helix scattering, its coherency matrix is of the form 

 Th = 
1

2
[

0 0 0

0 1 ±j

0 ∓j 1

]. (9) 

By assuming that all the four scattering mechanisms are uncorrelated, the four-component 

decomposition for the coherency matrix of a pixel in multilook PolSAR data is given by  

 T = fsTs + fdTd + fvTv + fhTh. (10) 
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From (10), six equations with eight unknowns are found: 

 t11 = fs + fd | α |2 + fv/2,  (11) 

 t22 = fs | β |2 + fd + fv/4 + fh/2, (12) 

 t33 = fv/4 + fh/2, (13) 

 (t12) = fs(*) + fd(), (14) 

 (t12) = fs(*) + fd(), (15) 

 (t23) =  fh/2, (16) 

where fs, fd, fv, and fh are the real coefficients corresponding to the surface, double-bounce, volume, and 

helix scattering contributions. (.) and (.) represent the real and imaginary parts, respectively. In order 

to solve (10),  is set to zero if 〈(sHHsVV
* )〉  is positive, which implies that the surface scatter is 

dominant. Note that sHHsVV
*  refers to the Hermitian product of HH and VV polarisations. If 〈(sHHsVV

* )〉 

is negative, the double-bounce scatter is dominant and  is subsequently fixed to zero. 

With the obtained fs, fd, fv, fh, , and , the contribution of each scattering mechanism to the total 

power P can be estimated as  

 P = Ps + Pd + Pv + Ph, (17) 

where 

 Ps = fs (1 + ||2), (18) 

 Pd = fd (1 + ||2), (19) 

 Pv = fv, (20) 

 Ph = fh. (21) 

The powers Ps, Pd, Pv, and Ph denote the contributions of the surface scattering, double-bounce 

scattering, volume scattering, and helix scattering in each pixel of PolSAR data.  

 

3. MULTISTAGE FOUR-COMPONENT POLARIMETRIC DECOMPOSITION 

 

Chen et al. (2014, p. 1845) generalised the odd-bounce and double-bounce scattering models by consi-

dering the rotation angle  about the radar line of sight. The coherency matrix for the generalised odd-

bounce model takes the form 

 Ts(s) = RTsRT = [

1 β
*
 cos 2θs  β*

 sin 2θs

β cos 2θs | β |
2
 cos2 2θs  1

2
 | β |

2 sin 4θs

 β sin 2θs  1
2
 | β |

2 sin 4θs | β |
2
sin

2
 2θs

] (22) 

and the generalised double-bounce model is given by 

 Td(d) = RTdRT = [

| α |
2

α cos 2θd  α sin 2θd

α* cos 2θd cos2 2θd  1
2
 sin 4θd

 α* sin 2θd  1
2
 sin 4θd sin

2
 2θd

], (23) 

where |  | and |  | < 1. The rotation matrix R is defined as 

 R = [
1 0 0

0 cos 2θ sin 2θ

0  sin 2θ cos 2θ

]. (24) 

By setting  to zero, Ts(s) becomes 

 Ṫs = [
1 0 0

0 0 0

0 0 0

] (25) 

which is roll-invariant, i.e., Ṫs = RṪsR
T. Note that (25) is also the coherency matrix for a spherical or 

trihedral radar target. If  = 0, then Td(d) reduces to a symmetric matrix: 

 Ṫd(d) = [

0 0 0

0 cos2 2θd  1
2
 sin 4θd

0  1
2
 sin 4θd sin

2
 2θd

]. (26) 

Furthermore, Ṫd(d) turns into the following form if d = 0: 

 Ṫd  = [
0 0 0

0 1 0

0 0 0

]. (27) 
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As inspired by the generalised odd-bounce and double-bounce scattering models, two modified four-

component decompositions are introduced in Lee et al. (2018): 

 T = fsTs(s) + fdTd + fvTv + fhTh (28) 

and 

 T = fsTs + fdTd(d) + fvTv + fhTh. (29) 

If s = 0 in (28) or d = 0 in (29), then it means no rotation about the radar line of sight. Hence, (28) or 

(29) becomes the four-component decomposition derived by Yamaguchi et al. (2006), which is discussed 

in Section 2. Their solutions for fs, fd, and fv can be adopted in this case. 

From (28), there are nine equations with nine unknowns: (11), (16), 

 t22 = fs | β |2 cos2 2s + fd + fv/4 + fh/2, (30) 

 t33 = fs | β |2 sin2 2s + fv/4 + fh/2, (31) 

 (t12) = fs(*) cos 2s + fd(), (32) 

 (t12) = fs(*) cos 2s + fd(), (33) 

 (t13) =  fs(*) sin 2s, (34) 

 (t13) =  fs(*) sin 2s, (35) 

 (t23) =  fs | β |2 cos 2s sin 2s. (36) 

After some algebraic manipulations, the rotation angle s can be obtained by solving 

 a1 tan3(2s) + a2 tan2(2s) + a3 tan(2s) + a4 = 0 (37) 

with 

a1 = 2 [(t23)]2, 

(38) 

a2 = 4 c33 (t23) – t11 (t23) – 2 c22 (t23), 

a3 = t11c22 – t11c33 – 2 c22c33 + 2 [c33]2 – 2 [(t23)]2 – [(t12)]2 – [(t12)]2 – [(t13)]2 – [(t13)]2, 

a4 = t11(t23) – 2 c33(t23) – 2 (t12) (t13) – 2 (t12) (t13)  

       + (c22 – c33) ([(t13)]2 + [(t13)]2) / (t23), 

where c22 = t22 – fh/2 and c33 = t33 – fh/2. The value of fh is given by 

 fh = 2 | (t23) |. (39) 

In (37), it is obvious that tan(2s) takes three roots of a cubic equation. For non-zero real values of s, the 

solution of fs is given by 

 fs =  ( [(t13)]2 + [(t13)]2 ) / [ (t23) tan(2s) ].  (40) 

The remaining six unknowns can then be solved by substituting fh, fs, and s into (30) to (36). 

From (29), we also have nine equations with nine unknowns: (11), (16), 

 t22 = fs | β |2 + fd cos2 2d + fv/4 + fh/2, (41) 

 t33 = fd sin2 2d + fv/4 + fh/2, (42) 

 (t12) = fs(*) + fd() cos 2d, (43) 

 (t12) = fs(*) + fd() cos 2d, (44) 

 (t13) =  fd() sin 2d, (45) 

 (t13) =  fd() sin 2d, (46) 

 (t23) =  fd cos 2d sin 2d. (47) 

Similarly, the rotation angle d can be solved through 

 a1 tan3(2d) + a2 tan2(2d) + a3 tan(2d) + a4 = 0, (48) 

where a1, a2, a3, and a4 are given separately in (38). In the cases with non-zero real values of d, the value 

of fh is computed based on (39) and the remaining seven unknowns can be successively obtained from 

(41) to (47). By taking out the helix scattering, (28) and (29) become three-component decompositions 

with only eight equations and eight unknowns. The solutions follow the same manner, where fh is equal 

to zero.   

One might be interested in setting s = d = , which yields 

 T = fsTs() + fdTd() + fvTv + fhTh.  (49) 

From (49), we have (11), (16), 

 t22 = fs | β |2 cos2 2 + fd cos2 2 + fv/4 + fh/2, (50) 

 t33 = fs | β |2 sin2 2 + fd sin2 2 + fv/4 + fh/2, (51) 

 (t12) = fs(*) cos 2 + fd() cos 2, (52) 

 (t12) = fs(*) cos 2 + fd() cos 2, (53) 

 (t13) =  fs(*) sin 2  fd() sin 2, (54) 
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 (t13) =  fs(*) sin 2  fd() sin 2, (55) 

 (t23) =  fs | β |2 cos 2 sin 2  fd cos 2 sin 2. (56) 

It can be easily observed that (52)(55) are actually dependent equations, i.e.,  

 (t13) / (t12) = (t13) / (t12). (57) 

Consequently, there exist less than nine independent equations and (49) is thus not taken into conside-

ration. 

By letting α = β = 0, (28) becomes  

 T = fsṪs + fdṪd + fvTv + fhTh (58) 

and (29) turns into 

 T = fsṪs + fdṪd(d) + fvTv + fhTh. (59) 

From (58), there are four equations with four unknowns: (13), (16),  

 t11 = fs + fv/2,  (60) 

 t22 = fd + fv/4 + fh/2. (61) 

The solutions for fs, fd, fv, and fh are straightforward. From (59), we have five equations with five 

unknowns: (16), (42), (47), (60),  

 t22 = fd cos2 2d + fv/4 + fh/2. (62) 

The rotation angle d can be computed from  

 (t23) tan2(2d)  (t22  t33) tan(2d)  (t23) = 0. (63) 

In fact, (63) can also be written as 

  4d = tan-1[ 2 (t23) / (t22  t33) ]. (64) 

It is interesting to note that (64) is related to the polarisation orientation angle in Lee and Ainsworth 

(2011, p. 55) and the rotation angle in Yamaguchi et al. (2011, p. 2254). The existence of negative sign 

in (64) is due to the anticlockwise definition of d. For the three-component decomposition without helix 

scattering, (58) reduces to three equations with three unknowns, while (59) possesses only four equations 

with four unknowns. 

From (13), (30), (31), (39), (41), (42), (61), and (62), it can be easily noticed that all the four-

component decompositions require t22  | (t23) | and t33  | (t23) |. If these requirements are unfulfilled, 

then all the decompositions are mathematically invalid. A negative value of fv occurs, for examples, if fs 

in (31) and fd in (42) and (62) is positive. 

The multistage four-component polarimetric decomposition consists of three processing stages. In the 

first stage (i.e., s = d = 0), the Yamaguchi’s four-component decomposition is employed to obtain fs, fd, 

and fv. Those pixels with negative value of fs, fd or fv are marked as negative power pixels. Meanwhile, 

those pixels with all positive fs, fd, and fv, but | α | or | β |  1, are marked as incorrect positive power 

pixels. 

In the second stage, the decompositions are applied to those marked pixels based on (28) and (29). As 

aforementioned, a set of fs, fd, and fv values can be derived for each non-zero real rotation angle (s or d). 

Only the set, which fulfils the following criteria, is selected: (i) fs, fd, and fv > 0, (ii) | α |2 and | β |2 < 1, 

(iii) | α |2 < cos2 2d. Note that the third criterion is required merely for (29).  

In the third stage (i.e.,  =  = 0), the decompositions are performed based on (58) and (59) for the 

remaining marked pixels from the second stage, where the set with all positive fs, fd, and fv is selected. It 

is important to note here that the quadratic equation in (63) is used for calculating the rotation angle d in 

(59). 

 

4. ALOS-2 PALSAR-2 DATA 
 

Covering a large area of Penang and Kerian District of Perak in Peninsular Malaysia, the ALOS-2 

PALSAR-2 single-look complex data (level 1.1) were provided by Japan Aerospace Exploration Agency 

(JAXA). The test data (scene ID: ALOS2096050090-160303) were acquired on 3rd of March 2016 (17:30 

UTC) containing four SAR image files, one leader file, one volume directory file, and one trailer file. 

The numbers of range and azimuth pixels in the SAR image file were 8512 and 25961, respectively. 

From the data set summary record in the leader file, the range pixel spacing was found to be 

2.8608445 m, while the azimuth pixel spacing was 2.7986920 m.  
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In the ALOS-2 PALSAR-2 single-look slant-range quad-polarisation data, each pixel can be repre-

sented by a three-dimensional complex vector after symmetrising the cross-polarised responses: 

 s = [

sHH

√2sHV

sVV

]  = c [

IHH + jQ
HH

{(I
HV

 + IVH) + j(Q
HV

 + Q
VH

)} /√2

IVV + jQ
VV

]. (65) 

The 32-bit in-phase and quadrature components are denoted separately by I and Q. The scalar c equals to 

10(CF32)/20, where the value of the calibration factor (CF) is 83 (Motohka et al., 2018). In this study a 

four-look polarimetric covariance matrix was formed by taking 22 neighbouring pixels. After the 

multilooking, the image size was reduced to 4256 columns and 12980 rows.  

 

5. EXPERIMENTAL RESULTS 

 

The boxcar filter with a 33 window was first applied to the multilook ALOS-2 PALSAR-2 data. The 

coherency matrix was then obtained through a linear conversion from the filtered covariance matrix 

(Cloude and Pottier, 1996, p. 501). Afterwards, the ALOS-2 PALSAR-2 filtered data were used as the 

inputs for the polarimetric decomposition. 
 

5.1 Negative Power Problem 

 

As mentioned in Section 1, one well-known problem associated with the model-based decomposition is 

the presence of negative scattering powers. Figure 1(b) and Figure 1(c) show separately the distribution 

of the negative power and incorrect positive power pixels over a selected area of Penang Hill resulting 

from both the Yamaguchi’s and multistage four-component decompositions. By comparing with Figure 

1(b), the negative power pixels were lesser over Teluk Bahang Dam in Figure 1(c). Meanwhile, more 

negative power pixels over the Penang Hill were removed. The number of the negative power pixels in 

the entire Yamaguchi’s decomposition output was about 31.2%. The amount reduced to around 4.8% by 

using the multistage four-component decomposition. Table 1 tabulates the exact numbers of the negative 

power and incorrect positive power pixels for both the Yamaguchi’s and multistage four-component 

decompositions. 

 
Table 1: Number of negative power and incorrect positive power pixels 

 Negative power pixels Incorrect positive power pixels 

Volume scattering model based on uniform distribution 

Yamaguchi’s four-component decomposition 17245340 390485 

Multistage four-component decomposition 2638494 - 

 

Volume scattering model with total randomness 

Yamaguchi’s four-component decomposition 11808286 38822 

Multistage four-component decomposition 465010 - 

 

For comparison, another volume scattering model with total randomness, which was proposed by An 

et al. (2010, p. 2734), was employed. Its coherency matrix has the form 

 Tv = 
1

3
[
1 0 0 

0 1 0

0 0 1

]. (66) 

This roll-invariant volume scattering model is also obtainable from (1) in Freeman (2007, p. 2584) by 

setting   0. The resultant numbers of the negative power and incorrect positive power pixels are listed 

in Table 1, where the numbers are apparently lower than those based on uniform distribution. Figure 1(d) 

shows a significant reduction of the negative power pixels over the Penang Hill after applying the 

multistage four-component decomposition. Similar to our previous findings in Lee et al. (2018), some of 

the remaining negative power pixels belonged to man-made objects, such as buildings, bridges, floating 

aquaculture farms etc. These negative power pixels exhibited t22 < | (t23) | or t33 < | (t23) |, which caused 

the multistage four-component decomposition to be invalid. Moreover, many sea pixels were also found 

in this study to have such identical characteristics. Table 2 provides the exact number of the invalid 

pixels found in the entire ALOS-2 PALSAR-2 filtered data.  
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By considering and combining both the three-component and four-component decompositions 

together, an iterative multistage polarimetric decomposition was established, where its design is given in 

Figure 2. The iterative multistage decomposition was first performed by using the volume scattering 

model based on uniform distribution, followed by the volume scattering model with total randomness. 

From the obtained result, the total number of the negative power pixels was further reduced to less than 

0.08%, i.e., 41673 pixels. 

 
Table 2: Number of invalid pixels 

t22 < | (t23) | t33 < | (t23) | t22 < | (t23) | and t33 < | (t23) | 

9688 384408 - 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 1: The distribution of negative power pixels and incorrect positive power pixels. (a) A subset of the ALOS-2 

PALSAR-2 data over Penang Hill, where Teluk Bahang Dam is located near the top-left corner. The HH, HV, and 

VV intensities are displayed in the red, green, and blue (RGB) colour space. (b) and (c) show separately the 

Yamaguchi’s and multistage four-component decompositions with volume scattering model based on uniform 

distribution. (d) Multistage four-component decomposition by using volume scattering model with total random-

ness. In (b)(d), the negative power pixels and the incorrect positive power pixels are coloured in yellow and red, 

respectively. 
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Figure 2: Iterative multistage polarimetric decomposition, which operates on a pixel-by-pixel basis 

 

5.2 Scattering Classification 

 

For the scattering classification, each pixel is categorised by comparing its decomposed powers and 

identifying the dominant scattering contribution. For example, a pixel belongs to volume scattering if 

Pv > Ps, Pv > Pd, and Pv > Ph. Figure 3 presents a subset of the dominant scattering classification output 

over rice paddy fields in Kerian District resulting from the iterative multistage polarimetric 

decomposition. A small fishing village called Tanjung Piandang is situated near the top-left corner in 

Figure 3(a).  

The percentage of different scattering mechanisms of selected land cover classes is given in Table 3. 

The bare land, cleared land, and rice paddy field showed predominantly the surface scattering, i.e., more 

than 98%. Both the dryland forest and shrub were largely dominated by the volume scattering. The 

mangrove forest was characterised as having the dominant volume scattering (82.65%), followed by the 

surface scattering (15.16%). For the oil palm plantation estates, both the surface scattering (51.68%) and 

volume scattering (45.66%) were mostly detected. The double-bounce scattering was the main scattering 

component of the Penang Bridge, which contributed more than 85%. The Penang Port manifested its 

dominant double-bounce scattering of about 79.06%. The double-bounce scattering mechanism was 

expectably generated by the radar wave interactions between the cargo containers and the ground. In the 

first built-up area (i.e., built-up 1), the buildings were almost perpendicular to the radar illumination. The 

double-bounce scattering was dominant as a result of the successive reflections from the wall-ground 

structures. In contrast, the second built-up area (i.e., built-up 2) comprised the oriented buildings, which 

were not perpendicular to the radar illumination. These buildings showed a mixture of the surface, 

double-bounce, volume, and helix scattering mechanisms. The surface, double-bounce, volume, and 

helix scattering contributions were 26.48%, 14.93%, 58.35%, and 0.24%, respectively.    

 

6. CONCLUSIONS 
 

Applying on the ALOS-2 PALSAR-2 fully polarimetric data, our previously proposed multistage four-

component decomposition was first re-examined for reducing the negative power pixels. From the 

multistage four-component decomposition results, the negative power pixels over vegetated areas, such 

as dryland forest, mangrove forest, oil palm, and shrub, were reduced significantly. The remaining 

negative power pixels distributed notably over man-made objects and sea. By integrating both the three-

component and four-component decompositions, an iterative multistage decomposition was subsequently 

developed, which made use of two roll-invariant volume scattering models. The iterative multistage 

decomposition further reduced the total number of the negative power pixels to less than 0.08%.                              
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(a) (b) 

Figure 3: (a) A subset of the ALOS-2 PALSAR-2 test data over rice paddy fields in Kerian District, where a small 

fishing village called Tanjung Piandang can be seen near the top-left corner. The HH, HV, and VV intensities are 

displayed in the RGB colour space. (b) The dominant scattering classification result of (a), where the surface, 

double-bounce, and volume scattering classes are coloured in red, green, and blue, respectively. 

 
Table 3: Scattering mechanisms (in percent) of different land cover types 

 Number of pixels Surface Double-bounce Volume Helix 

Bare land 5087 98.25 0.63 1.12 - 

Bridge  712 9.41 85.95 4.64 - 

Built-up 1 10223 24.75 73.70 1.55 - 

Built-up 2 23804 26.48 14.93 58.35 0.24 

Cleared land 10359 99.96 - 0.04 - 

Dryland forest 126615 5.80 0.43 93.71 0.06 

Mangrove forest 88564 15.16 2.17 82.65 0.02 

Oil palm 22416 51.68 2.66 45.66 - 

Port 1853 15.87 79.06 4.96 0.11 

Rice paddy field 31778 99.26 0.04 0.70 - 

Shrub 3580 8.02 0.44 91.54 - 
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