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ABSTRACT: Spatial similarity transformation can be mathematically performed through scaling, rotation and 
translation. From computational aspect, the scale factor of the similarity transformation can be solved either jointly 
with or separately from other two parameter sets. On some occasions, the true scale is seemed as the main focus while 
freeing the setting of the origins and poses of the coordinate systems. The quality of the scale factor estimation would 
depend on the types of measurement and the approaches used to reach the solution. The scale factor can be resolved 
under the concept of being the ratio of the corresponding distances between the two employed coordinate systems. 
As such, the related literatures under 3D similarity transformation theme have shown various ways of solving the 
scale factor based on the observed conditions and target error functions under the weighted least-squares adjustment 
technique. Thus, the aim of this study is to evaluate the quality of scale parameters solved through different methods. 
To this end, the theoretical precision and empirical accuracy realized in simulation data have been analyzed and the 
suggestions of attaining scale factor are made toward the practical applications. 
 
1. INTRODUCTION 
 
For 3D spatial similarity transformation, the scale factor is the ratio of the conjugate lengths (or distances). Although 
the scale factor is one of parameters in the transformation, it does not mean that one has to solve all the parameters 
to attain the scale factor. As proposed in many studies, the scale factor can be solved independently and linearly to 
fulfill the need of those tasks only involving the scale factor parameter or attempting to sequentially solve 
transformation parameters in a linear fashion. This study focuses on the direct solutions of scale factor on point basis. 
The comparisons of the equation forms and the solution quality are the main features concluded in this work.  
 
2. LITERATURE REVIEW 
 
The related scale factor solutions derived and reported from previous studies are reviewed as follows.  
 
2.1 3D Spatial Similarity Transformation Flexible Formula with Scale Factor 
 
Supposing that there are n points in two different coordinate systems, the 3D seven-parameter similarity 
transformation formula is given in a matrix form as Eq. (1): 

 
 s = t +λRp  , (i =1 ,2,3,...,n) (1) 

 

Where, s = [X   ,Y  ,  Z ] (points in the target coordinate system), t= [X   ,Y  ,  Z ] ( the translation vector), λ (the scale 
factor), R(α,β,γ) (the rotation matrix), p = [x   ,y  ,  z ] (points in the original coordinate system). It can be seen that 
the 3D seven-parameter transformation formula contains translation vector, rotation angles, and scale factor parameters. 
To eliminate the translation parameters, one can shift the origins of the coordinates to their corresponding centroids, 
thus with Eq. (2):  

 
  ∆s =λR∆p , (i =1 ,2,3,...,n)  (2) 
 
with ∆s = s − s̅, ∆p = p − p, where s̅ and p are the centroid coordinates of the two coordinate systems. 

 
Through this process, the original equation (Eq. (1)) has been simplified to a formula without translation vector.  

 
As the rotation matrix is an orthogonal one, Awange and Grafarend (2002) proposed the concept of anti-skew 
symmetric matrix C' as shown in Eq. (3): 
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 R=(I−C’) (I+C’), where, C’ =
0 −c b
c 0 −a

−b a 0
 (3) 

 
Za'voti  (2015) adopted the above approach and applied the centric coordinates to eliminate both the rotation matrix 
and the translation vector from the transformation and derived the quadratic form of scale factor formula as expressed 
in Eq. (4): 
 
 λ (∆p ∆p )=(∆s ∆s ), (i =1 ,2,3,...,n) (4) 
 
It can be seen that there are indeed several forms of transformation, with complete set of parameters (Eq. (1)), partial 
parameters (Eq. (2)), or scale factor only (Eq. (3)) available.  With focus on scale vector and its direct solution, Eqs. 
(2) and (3) are to be further studied for the associated solution forms.  
 
2.2 Solutions of Scale Factor 
 
The direct solutions of scale factor were derived by several authors and the details are given as follows: 
 
Solution 1 of scale factor (Albertz –Kreiling, 1975): The first step is to take the root of Eq. (4): 
 

 λ ∆p ∆p  = ∆s ∆s  , (i =1 ,2,3,...,n) (5) 
 
Adding all the observation using Eq. (4) to find the ratio of summed distances, thus λ  as shown in Eq. (6): 

 

 λ =
∑ ∆  ∆

∑ ∆  ∆

 (6) 

 
Eq. (6), the solution 1, has the mathematical meaning of being is the ratio of the sum of the conjugate distances 
between the two coordinate systems. 

 
Solution 2_1 and solution 2_2 of scale factor (Horn, 1987): Considering that there are always errors associated with 
observations, the residual vector for Eq. (2) is expressed as in Eq. (7):  

 
 ∆v = ∆s – λR∆p , (i =1 ,2,3,...,n ) (7)                                            

 
With the least-squares method by taking differentiation with respect to λ, one can obtain: 

 

 λ _ =
∑ (∆ ∆ )

∑ ∆ ∆
 (8)  

 
Eq. (8), the solution 2_1, contains both rotation matrix and scale factor.  
 
Horn (1987) proposed a symmetric expression of errors: 

 

 ∆v  = 
√

∆s  – √λR∆p , (i =1 ,2,3,...,n ) (9) 

 
When the errors expressed above, the least-squares solution can be reached as: 

 

 λ _ =
∑ (∆ ∆ )

∑ ∆ ∆
  (10) 

 
Eq. (10), the solution 2_2, is estimated by taking the root of the ratio of summed square distances.  

 
Solution 3 of scale factor (Za'voti and Kalmár, 2015): Based on Eq. (5), the residual vector can be expressed as Eq. 
(11):  

 

 ∆v  = ∆s ∆s – λ ∆p ∆p , (i =1 ,2,3,...,n ) (11) 
   
And the least-squares solution of scale factor can be obtained as: 
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 λ =
∑ (∆ ∆ ) ∆ ∆𝐧

𝐢 𝟏

∑ ∆ ∆
 (12) 

 
Eq. (12), the solution 3, has both target and original components in numerator, as that of solution 2_1, yet with scale 
factor only. 

  
Solution 4_1 and solution 4_2 of scale factor: Since the scale factor is conceptually the ratio of the conjugate lengths 
(or distances). With such, the scale factor solution can also be found from the individual scale observations either 
with equal weight (Eq. (13), solution 4_1) or weighted (Eq. (14), solution 4_2) approaches.  
 

 λ _  = (∑
∆  ∆

∆  ∆

)/n (13) 

 

 λ _  = (∑ P
∆  ∆

∆  ∆

)/ ∑ P , with P   the weight of 
∆  ∆

∆  ∆

 (14) 

 
 

3. STUDY OF METHOD 
 
This study discusses and compares the similarities and differences of each solution of the scale factor based on the 
point observations with centric coordinates. And then the evaluation of solutions is followed in the experiments. The 
overall comparisons of scale factor solutions are given in section 3.1, while section 3.2 analyzes whether the rotation 
matrix affects the solution, and section 3.3 proves the equivalence of some solutions.  
 
3.1 Comparisons of Scale Factor Solutions 

 
Based on Eqs. (1) ~ (3), it can be stated that the root of each solution is either derived from coordinate transformation,   
the conjugate distances, or the scale solution itself. Figure 1 provides the scale factor solution scheme to highlight 
how they were formulated. 

 

 
Figure 1. Flow chart of scale factor solution 

 
Observing each solution, only solution_2 contains a rotation matrix. Solution 2_1, solution 2_2, and solution_3 
were all derived from the least-squares method, so they should have the best precision theoretically. 

 
3.2 Effect of Rotation Matrix 
 
The rotation matrix is an orthogonal matrix, which does not affect the length. As a linear mapping (transformation 
matrix), the orthogonal matrix can keep the distance constant, so it is also called equidistant structure. Rotation in 
geometry and linear algebra is a motion describing a rigid body around a fixed point (Figure 2), a transformation in 
a plane or space, the rotation and the transformation mentioned above are equidistant, the distance does not change 
after the transformation. The proof of equidistant structure is given as follows. 
 
The following 3D coordinate system shows that the original coordinate system is rotated to another coordinate system, 
expressed in matrix form as: 
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x
y

z′
= R

x
y
z

 (15) 

 
When calculating the distance, the matrix must be multiplied by its own transposed matrix. It is known that the 
rotation matrix is an orthogonal matrix, so the transposed matrix is equivalent to the inverse matrix. The transposed 
rotation matrix is multiplied by the original one to attain the identity matrix, as shown in Eq. (16), so the rotation 
matrix is proved to not to affect the distance through the transformation. 
 

 [x  y  z′]
x
y

z′
 = [x y z]R R

x
y
z

=[x y z]I
x
y
z

  (16) 

 

 
Figure 2. 3D space rotation does not affect the distance 

 
3.3 The Equivalence of  The Solutions Derived from The Least-Squares Method 
 
It is known that λ _ , λ _ , and λ  are all obtained by the least-squares method, except that the target functions are  

different, with λ _   derived from ∆v  = ∆s – λR∆p , λ  from ∆v = ∆s ∆s  – λ ∆p ∆p , and λ _  from ∆v  = 
√

∆s  

– √λ R ∆p , to find the best solution of scale factor. As (∆s ∆s )(∆p ∆p )  is equal to ∆s ∆p , 

so ∑ (∆s R∆p ) and ∑ (∆s ∆s )(∆p ∆p )  are actually identical.  
 
Solution 2_1, solution 2_2, which were both derived from ∆v  = ∆s – λR∆p . Therefore, they should be the same, and 
the optimal property of the estimator described in the mathematical statistics is mainly that the estimator should have 
unbiasedness, consistency, validity, and processing with random error according to the least-squares method. 
 
The above analysis concludes that the solution 2_1, solution 2_2, and solution 3 are equivalent and all result from 
least-squares method. 
 
3.4   Precision Evaluation Method 
 

As for the precision evaluation, the theoretical precision is evaluated by the error propagation. The variance 
propagation method is used to find the variance of the six kinds of scale factor solutions listed above, it is the most 
direct and effective way to offer the solution quality since the partial derivative components of the point coordinates 
before and after the transformation can be taken through Eq. (17), taking the λ  as the example:  
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4.     EXPERIMENT AND ANALYSIS 

 
The error propagation mentioned above can directly consider the error on the points before and after the conversion. 
Usually, the discrepancy (Figure 3) of transformation needs to be absorbed by the residual vector together with the 
estimated parameter.  
 

 

 

  

 

 

 

 

 

 

 

 

Figure 3. 3D space conversion affected by errors 
 

The experiments are mainly based on simulated data sets as stated below. Starting with seven-parameter 
transformation, the translation, rotation matrix, scale factor, and a set of points are hypothesized to serve as the true 
values. The purpose of simulating three experiments, shown as below, is to observe the influences of modulating 
number of points, level of accuracy, and magnitude of scale factor.   
 
Test1: There are three points (1,1,1), (2,2,2), (3,3,3) before the conversion. These three points are rotated and scaled 
(magnification is 0.5), the performances of six solutions are analyzed.  
 
Case1: Given a random error with an overall standard deviation of 0.0005 for points in both coordinate systems, the 
quality of six solutions estimated is shown in Table 1.  
 

Table 1. Values and precision of each scale factor solution  
 Solution 1 Solution 2_1 Solution 2_2 Solution 3 Solution 4_1 Solution 4_2 

λ 0.5014 0.5009 0.5009 0.5009 1.4020 0.5335 

σ  2.6364e-04 2.2828e-04 2.2828e-04 2.2828e-04 0.5896 0.0167 
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Case2: Given random errors with overall standard deviation of 0.0005 and 0.0001 to the points in original and 
target coordinate systems, respectively, the quality of six solutions estimated is shown in Table 2. 
 

Table 2. Values and precision of each scale factor solution  
 Solution 1 Solution 2_1 Solution 2_2 Solution 3 Solution 4_1 Solution 4_2 

λ 0.5015 0.5010 0.5010 0.5010 1.2830 0.5368 

σ  1.2721e-04 1.1009e-04 1.1009e-04 1.1009e-04 0.5299 0.0151 

 
Case3: Given a random error with an overall standard deviation of 0.0001 and 0.0005 to the points in original and 
target coordinate systems, respectively, the quality of six solutions estimated is shown in Table 3. 
 

Table 3. Values and precision of each scale factor solution  
 Solution 1 Solution 2_1 Solution 2_2 Solution 3 Solution 4_1 Solution 4_2 

λ 0.5016 0.5011 0.5011 0.5011 3.8194 0.5125 

σ  2.3690e-04 2.0515e-04 2.0515e-04 2.0515e-04 1.9688 0.0061 

 

 
 

Figure 4. Precision of each solution in test1 
 

Analysis in test1: The best solutions, based on the standard deviation of the scale parameter, are found in solution 
2_1, solution 2_2, and solution 3, derived based on least-squares principle. The secondary best solution is solution 1 
and followed by solution 4_2. The solution 4_1 behaves the worst. The empirical accuracy given by the error the 
estimated parameter also suggests the very same trend. Regardless of solution types, the larger the coordinate 
uncertainty, the less precise the scale factor obtained.  
 
Test2: Compared with test1, more points have been deployed in test2. Gridded points (1,1,1) to (3,3,3), 27 points in 
total, are rotated and scaled (magnification is 0.5), the performances of six solutions are analyzed.  
 
Case1: Given a random error with an overall standard deviation of 0.0005 for points in both coordinate systems, the 
quality of six solutions estimated is shown in Table 4. 
 

Table 4. Values and precision of each scale factor solution  

 
Case2: Given random errors with overall standard deviation of 0.0005 and 0.0001 to the points in original and 
target coordinate systems, respectively, the quality of six solutions estimated is shown in Table 5. 
 

Table 5. Values and precision of each scale factor solution  
 Solution 1 Solution 2_1 Solution 2_2 Solution 3 Solution 4_1 Solution 4_2 

λ 0.5000 0.5000 0.5000 0.5000 0.4949 0.4907 

σ  3.7966e-05 3.6643e-05 3.6643e-05 3.6643e-05 0.0161 0.0501 

 Solution 1 Solution 2_1 Solution 2_2 Solution 3 Solution 4_1 Solution 4_2 
λ 0.5000 0.4999 0.4999 0.4999 0.5484 0.5038 

σ  7.8818e-05 7.6069e-05 7.6069e-05 7.6069e-05 0.0384 0.0013 
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Case3: Given a random error with an overall standard deviation of 0.0001 and 0.0005 to the points in original and 
target coordinate systems, respectively, the quality of six solutions estimated is shown in Table 6. 
 

Table 6. Values and precision of each scale factor solution  
 Solution 1 Solution 2_1 Solution 2_2 Solution 3 Solution 4_1 Solution 4_2 

λ 0.5000 0.5000 0.5000 0.5000 0.8165 0.5009 

σ  7.0851e-05 6.8380e-05 6.8380e-05 6.8380e-05 0.1922 5.4710e-04 

 

 
 

Figure 5. Precision of each solution in test2 
 

Analysis in test2: All the results nearly resemble the test1. The best solutions come from least-squares derived 
estimators. The only difference is that the parameter estimation benefits from more participating points, strengthening 
the solutions. Comparing the tables in test1 and test2, the gain of precision is three by virtue of 9 times observations.  
 
Test3: To illustrate the scaling effect, three points (1,1,1), (2,2,2), (3,3,3) are rotated and scaled (magnification is 2), 
the performances of six solutions are analyzed. 
 
Case1: Given a random error with an overall standard deviation of 0.0005 for points in both coordinate systems, the 
quality of six solutions estimated is shown in Table 7. 
 

Table 7. Values and precision of each scale factor solution  

 
Case2: Given random errors with overall standard deviation of 0.0005 and 0.0001 to the points in original and 
target coordinate systems, respectively, the quality of six solutions estimated is shown in Table 8. 
 

Table 8. Values and precision of each scale factor solution  
 Solution 1 Solution 2_1 Solution 2_2 Solution 3 Solution 4_1 Solution 4_2 

λ 2.0002 2.0004 2.0004 2.0004 1.4380 1.8130 

σ  4.7383e-04 4.1044e-04 4.1044e-04 4.1044e-04 0.1095 0.0365 

 
Case3: Given a random error with an overall standard deviation of 0.0001 and 0.0005 to the points in original and 
target coordinate systems, respectively, the quality of six solutions estimated is shown in Table 9. 
 

Table 9. Values and precision of each scale factor solution  
 Solution 1 Solution 2_1 Solution 2_2 Solution 3 Solution 4_1 Solution 4_2 

λ 1.9996 1.9996 1.9996 1.9996 1.9851 1.9948 

σ  2.5382e-04 2.1983e-04 2.1983e-04 2.1983e-04 1.0886 0.3628 

 

 Solution 1 Solution 2_1 Solution 2_2 Solution 3 Solution 4_1 Solution 4_2 
λ 1.9994 1.9995 1.9995 1.9995 1.6781 1.8923 

σ  5.2673e-04 4.5621e-04 4.5621e-04 4.5621e-04 0.6250 0.2083 
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Figure 6. Precision of each solution in test3 
 
Analysis in test3: Scaling up or down would affect the estimate with the errors varies between two coordinate systems. 
It shows that in scaling up case (Test 3: the magnitude of scale factor is 2), if the random errors in the original 
coordinate system are larger than that in target one, the scale factor solution is worsened due to the addition of 
enlarged point errors in the original coordinate system to the overall estimation, as shown in case2 vs. case3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Precision of each solution in test1 and test2 
 

Analysis in terms of precision: λ _ , λ _  and λ are derived by the least-squares method, so it can be understood that 
they have the best precision. On the other hand,  the precision of λ _  with weighting average, can be expected to be  
higher than that of  λ _ , unweighted estimate. λ  is the ratio of the sum of the distances between the two coordinate 
systems, it is still more effective and closer to the definition of the scale than λ _  and λ _ . Yet, it remains interesting 
to quantify how much difference between the solution 4_2 and other least-squares derived solutions, since the former 
one has been so often considered in routine tasks.    
 
5.     CONCLUSIONS AND FUTURE WORK 
 
In the direct solution model of the scale factor, this study explores and analyzes six different solutions. Although the 
most basic definition of the scale factor is the ratio of conjugate lengths, there are still different scale factor solutions 
under different preconditions. Through the mathematical analysis and numerical simulations, the three scale factors 
obtained by least-squares method have the same value and with the best precision. The number of points and the level 
of error all contribute to the scale factor solution as expected. Yet, the magnitude of scale factor, scaled up or scaled 
down, combined with the varied precision of points in two coordinates complicates the quality evaluation and makes 
itself appealing for further study. Last but not least, although solution 2_1 is among the best ones, the required rotation 
matrix makes the application of it in a more restricted way, unlike solution 2_2 and solution 3 purely basing on 
coordinates. 
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