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ABSTRACT: Land Surface Water Coverage (LSWC) is one of the critical parameters in large-scale flood 
identification and agriculture monitoring. In this paper, a time series geospatial database of LSWC was created to 
analyse the large-scale flooding pattern. Normalized Difference polarization Index (NDPI) was computed from 
AMSR-E brightness temperature of vertical and horizontal polarizations at 36.5 GHz frequency. NDPI anomaly was 
created by using different methods such as anomalies based on a reference year and multi-annual average (absolute, 
relative and standardized). Also, an image similarity was calculated by using Bhattacharya distance to extract the 
hidden information and similarities in the temporal images. Based on the similarity values, all the images in the 
database were ranked for rapid flood information extraction. The data used in the research include freely available 
AMSR-2 (2012-present) Passive Microwave Remote Sensing (MRS) data. The study area of the research covers the 
entire Tamil Nadu state of India. As Tamil Nadu is a coastal area, a buffer region from the coastline was created to 
identify the spatial variability of LSWC. The results show that there is a significant spatial variability of LSWC and 
also able to identify the major flood events. Also, the anomalies were helped to identify the geographic locations of 
flood hotspots at specific times during the flood events. Various anomalies were helped to identify the trend and 
pattern of flooding throughout the study area. 
 
1 INTRODUCTION 
 
Flood disasters are increasing globally and resulted in numerous losses. Climate change and population growth are 
the major driving factors to this phenomenon. Geospatial flood maps are the major tools for the preparation of 
emergency disaster response plan. These maps provide the crucial flood information such as the spatial extent of a 
flood event, people/crops affected, depth of flood water, flood losses, etc. Passive Microwave Remote Sensing (MRS) 
plays a major role in collecting the data due to the penetration of microwave signal through the clouds. Passive MRS 
provides spatiotemporal images for monitoring and analyzing the large-scale flood events. The difference of Vertical 
(V) and Horizontal (H)  polarizations at 37 GHz frequency was preferable (Choudhury & Tucker 1987) to identify 
the flooding effects occurred in the Amazon River. For several flood events of Amazon River and other floodplains 
of South American rivers, the differencing algorithm (Sippel et al. 1994) applied to V and H polarizations at 37 GHz 
frequency measured by SMMR, was used to find the spatial extent of the flood area. Some studies also mention that 
Polarization Difference (PD = Tbv - Tbh) (Choudhury 1991) is largely influenced by vegetation cover and atmospheric 
conditions. Indices such as Polarization Ratio (PR = (Tbv - Tbh)/(Tbv + Tbh)) (Kerr & Njoku 1993) (Paloscia et al. 
2001), Water Surface Fraction (WSF) (Zheng et al. 2008), Normalized Difference Frequency Index (NDFI) (Takeuchi 
& Gonzalez 2009), Wetness Index (WI) (Temimi et al. 2007), Water Surface Ratio (WSR) (Tanaka et al. 2003), 
Polarization Index (PI = (Tbv − Tbh)/[0.5(Tbv + Tbh)]) (Singh et al. 2013), Normalized Difference Polarization Index 
(NDPI) (Li & Takeuchi 2016) (Xi & Takeuchi 2015), land surface fractional open water (fw) (Du et al. 2016), 
Polarization Ratio Variation Index (PRVI) (Lacava et al. 2015) were used by the researchers for flood mapping and 
soil moisture estimation. The PR is less affected by atmospheric conditions, and also it is independent of effective 
soil temperature. NDFI is also a good indicator of water coverage on the land surface, and this index can distinguish 
both land and water surfaces. A study conducted by (Watts et al. 2012) on AMSR-E fw within the Arctic-Boreal 
Region is in strong agreement with regional monsoon cycles observed by basin discharge stations. Land Surface 
Water Coverage (LSWC) developed by (LI Xi & Wataru TAKEUCHI 2014) combining both AMSR-E and MODIS 
(Moderate Resolution Imaging Spectroradiometer) was useful for predicting the flood events. It is also identified that 
MODIS cannot detect the large scale flooding due to attenuation by the atmospheric window. The image similarity 
calculated by Bhattacharya distance (LI Xi & Wataru Takeuchi) was very useful in rapid extraction of flood 
information. 
Advanced Microwave Scanning Radiometer 2 (AMSR-2), a passive MRS sensor onboard GCOM-W satellite 
launched by Japan is acquiring the data globally from July 02, 2012. Before this Advanced Microwave Scanning 
Radiometer-Earth Observing System (AMSR-E), onboard AQUA satellite had acquired the data globally form June 
06, 2002 to Oct 04, 2011. This data can be freely obtained from JAXA website. With the launch of AMSR-2 which 
acquires the data at various frequencies and polarizations, there is a huge scope of rapid mapping of large-scale flood 



events. The main objective of the research is to identify the potential of AMSR-2 in large-scale flood identification 
and to create the flood anomalies to identify the flood hotspots. 
 
2 STUDY AREA AND DATASETS USED  
 
The study area of the research shown in Figure 1 includes entire Tamil Nadu state of India which extended from 
76.23ºE to 80.35ºE longitudes and 8.08ºN to 13.56ºN latitudes. Tamil Nadu state has 32 districts as per the 2011 
census with a total area of about 130,058 km2. The major rivers flow through the state includes Palar, Cauvery, 
Vaigai, Ponnaiyar, and Varattar. Also, Tamil Nadu has the second largest coastline of about 1,076 km in the country. 

 
Figure 1: Study area showing India map and southern state Tamil Nadu. 

List of flood events occurred in the state were collected from various secondary sources and found that the state has 
experienced two major flood events from Jan 2012 to Aug 2017. One of which happened on 01/11/2012 as shown in 
Figure 2a. The southern parts of the state were mainly affected by this flood and incurred huge losses. Another major 
flood event took place during 30th Nov-1st Dec 2015 in and around Chennai city as shown in Figure 2b. Chennai flood 
resulted in the heavy destruction of lifeline networks of the city. The cyan colour in Figure 2 shows the flood-affected 
areas. 

  
Figure 2: Major flood event in Tamil Nadu state. (a) 2012 flood event, (b) Chennai flood event 

Spatio-temporal datasets of Level-3 AMSR-2 Brightness Temperature (Tb) acquired with horizontal (H) and vertical 
(V) polarization at 36.5 GHz frequencies from 2012 to 2017 were used for regional level flood event detection, i.e. 
at a state level. Level-3 AMSR-2 Tb is available at a spatial resolution of 10x10 km2 and a 0.5-day temporal resolution. 
Globally every day the sensor acquires through one ascending and descending passes. For bulk acquisitions of 
temporal AMSR-2 images, subsetting of the data is not available on JAXA website. So, the entire world images were 
obtained from JAXA and these images were clipped to the study area extent. In the clipping operation, the parameters 
such as cell size, processing extent, no data values and image file formats are kept same to maintain the consistency 
of the database. Apart from the satellite datasets, the Tamil Nadu state and district boundary shapefiles were obtained 
from Data Meet warehouse which was created under GNU license. 

Figure 2a Figure 2b 



3 METHODOLOGY AND ANALYSIS 
 
The methodology is divided into two parts, the first part deals with pre-processing and analysis of spatiotemporal 
AMSR-2 images, whereas second part deals with flood hotspot detection using flood anomalies.  
 
3.1 Spatio-temporal analysis of AMSR-2 data 
 
All the temporal images of level-3 AMSR-2 were calibrated to calculate the Tb. The calibration factor 0.01 given in 
the AMSR-2 user manual was multiplied with the data values to get the correct temperature in Kelvin. The ascending 
and descending pass images are averaged to get the daily AMSR-2 images for each polarization respectively. All the 
computation on the images is performed by pixel-to-pixel basis. In the process of generating the daily images and 
further analysis, the No-data values are not considered. The daily AMSR-2 images were used to generate the 
Normalized Difference Polarization Index (NDPI) by using the formula NDPI = (Tb36.5V - Tb36.5H) / (Tb36.5V + Tb36.5H) 
where V, H refers to vertical and horizontal polarizations and 36.5 GHz refers to the frequency of the emitted 
microwave signal to capture the flood. This index is not affected by atmospheric conditions and sensitive to the water 
coverage. So, the index can distinguish the land and water surfaces for effective identification. The index values are 
ranging from -1 to +1. For better interpretation of the information, a minimum-maximum normalization technique 
was applied to the index to create LSWC database from 2012 to 2017 of the study area. LSWC represents the fraction 
of water coverage on the land surface with the values ranging from 0-100. Any land use category with higher LSWC 
values can be inferred as flood-affected regions and vice versa. The high moisture content on the ground surface 
results in low BT values (Choudhury & Pampaloni 1995) in horizontal polarization than the vertical recorded by the 
emitted microwave signal. In addition to the flood mapping applications, LSWC also plays a major role in soil 
moisture mapping, crop growth monitoring and drought area identification. Time series plots of AMSR-2 images 
with daily, monthly and yearly frequencies are created. 
 
4 RESULTS AND DISCUSSIONS 
 
4.1 Flood detection from AMSR-2 images 
 
To understand the effect of trend and seasonality on the large-scale flood detection, time series AMSR-2 plots with 
varying frequencies of time are created. The spatial variation of daily LSWC average for the years 2012-2017 is 
shown in Figure 3. The red and green colour vowels in the figure represent the 2012 and Chennai flood events. 

 
Figure 3: Averaged daily spatial variation of LSWC for the years 2012-2017. 

The spatial variation of daily LSWC average is created by pixel-by-pixel averaging of same day images for all the 
years. The daily spatiotemporal distribution of LSWC throughout the study area shows an increase in the monsoon 
season. From the Figure 3, it is also observed that there is a fluctuation in the LSWC in the monsoon season. The 
high peaks in the monsoon may be the result of high rainfall or the presence of big water bodies. Also, there is a 
sudden a peak in the May month which needs a special investigation to find whether it is a noise data or may be the 
result of extreme events. The 2012 flood is easily detectable from the daily plot, whereas the Chennai flood is not 
highlighted. To analyze the Chennai flood further, geospatial analysis with data mining algorithms are required.  
The second level of aggregation, i.e. the monthly analysis is carried out to explore the seasonal level similarities in 
the LSWC database. The spatial variation of monthly LSWC average is created by pixel-by-pixel averaging of same 
month images for all the years. The scatter plot shown in the Figure 4a of year by year monthly LSWC average for 
the years 2012-2017. For the year 2012, the data is available from July month, and for the year 2017, the data is 
considered up to August. So, the first and last year in the database is not considered for the seasonality trend 
identification. From the figure, it is observed that the LSWC values of 2013 and 2014, 2015 and 2016 are following 



a similar trend and also 2013-2014 LSWC values are higher than the 2015-2016. For the further understanding of 
monthly LSWC variation, the monthly LSWC average for the years 2012-2017 is plotted in the Figure 4b. It is 
identified that the monsoon season has the high LSWC values as shown in a green colour vowel.  

 
Figure 4: Average monthly spatial variation of LSWC for the years 2012-2017. 
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To understand the variability in the monthly LSWC data, the box plot and the histogram with normalized frequency 
are created as shown in Figure 4c and Figure 4d. From these figures, it is identified that the overall variability in the 
monthly LSWC is less. Also, the monsoon season images have the higher values than the other months. The spatial 
variation of monthly LSWC average is shown in Figure 5. 

 
Figure 5: Spatial variation of monthly LSWC for the years 2012-2017. 

The red and blue colour represents the zero and 100% LSWC respectively. For most of the months in a year, the 
coastal area of the state has higher LSWC values due to low elevation and water discharge through the area into the 
sea. It is also identified that there is low spatial variation which might be due to coarse resolution of AMSR-2 images. 
Therefore, the two flood events are difficult to identify from the spatial variation of monthly plots. 
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The third level of aggregation, i.e. the yearly analysis is carried out to study the yearly variation of LSWC values. 
The spatial variation of yearly LSWC average is created by pixel-by-pixel averaging of same year images for all the 
years. Figure 6a and 6b show the yearly variation and spatial distribution of LSWC for the years 2012-2017.  

 
Figure 6: Spatial variation of yearly LSWC for the years 2012-2017. 

The 2012 and Chennai flood events are identified in the yearly analysis which is highlighted in a black vowel.  From 
all the time series plots, it is observed that third level of spatial aggregation of data is sensitive to large-scale flood 
events. The low values of 2015 LSWC shown in Figure 6a are attributed to spatial averaging and less variability of 
the data. In all the time series plotting, missing data is omitted.  
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4.2 Image similarity calculation 
 
Image similarity plays a crucial role in rapid flood information retrieval. To identify the hidden similarities in the 
LSWC geodatabase, the highest LSWC value image is chosen as a master image. All the images in the database are 
compared with the master image with the help of Bhattacharya distance to calculate the Image similarity. The 
similarity values are assigned to images based on the distance, the lesser the distance, the better match with the master 
image. The images are ranked based on the similarity values. From the results, it is found that high similarity values are 
assigned to monsoon images. The Chennai flood image of 3rd Dec 2015 has got the similarity value with 0.7269 and ranked as the 
12th image in the entire database.  
 
4.3 LSWC anomaly 
 
To find the flood hotspots, LSWC anomalies are created with based on a reference year, multi-annual average 
(absolute, relative and standardized). All the anomalies are created for yearly averaged data because it is identified 
as sensitive to large-scale flood mapping. In the reference year method, a reference year (2014) was selected based 
on the high variance in the data, and simple differencing approach is used. For the multi-annual average method, a 
four-year average is subtracted from every year. From the results of LSWC anomalies, the coastal areas are identified 
as the most vulnerable of the state. 
 
5 CONCLUSIONS 
 
In this paper, LSWC has derived from passive coarse resolution AMSR-2 Tb. The daily LSWC geodatabase for the 
years 2012-2017 has been created. It is proved that LSWC geodatabase has a great synergy for identification of the 
spatial and temporal components of various flood events at the regional level. Third level spatiotemporal aggregation 
is suitable for large-scale flood event detection. Also, Image similarity helps in raking the images for rapid flood 
information extraction. The results of coarse resolution AMSR-2 LSWC images appear to a slight underestimation 
of Chennai flood. The floods in an urban area are slightly under by the passive AMSR-2 images. 
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