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ABSTRACT: Geo-statistical modelling of rubber growing soils of Kottayam district in Kerala was carried out to 

assess soil fertility status of rubber plantations in order to develop a WebGIS enabled platform for soil fertility 

recommendation to rubber farmers. About two thousand and eighty two soil samples were collected from rubber 

growing areas of the district on a fifty hectare grid basis using satellite-derived rubber distribution maps. Soil 

samples were analysed for soil pH, organic carbon, primary, secondary and micronutrients following standard 

procedures. Geo-statistical modelling was performed to interpolate soil fertility parameters using ordinary kriging 

algorithm in GIS platform to generate soil fertility maps. Best fit semi-variogram models were used to interpolate 

soil feriltilty parameters and cross-validated with standard prediction error parameters. Nugget-to-sill ratios of the 

semi-variogram model revealed that degree of spatial autocorrelation of most of the soil fertility parameters were 

moderate in the study area. Spatial variability of soil fertility parameters indicated that major portion of NR 

growing soils in the study area exhibited acidic status of soil pH. Available organic carbon status was high to very 

high whereas status of available phosphorus and potassium were low. Secondary nutrients such as available 

calcium, magnesium and sulphur were also exhibited low status. Micronutrients status was sufficient but available 

boron and zinc showed deficient in some places of the district. A WebGIS enabled application called Rubber Soil 

Information System (RubSIS) was developed using the soil fertility variability maps and soil depth data of the study 

area. It gives location-specific and need-based recommendation for use of chemical fertilisers in one holding 

according to the age and the extent of the rubber plantation. Results of geo-statistical modelling of soil fertility 

parameters used to develop RubSIS are briefly discussed in the paper. 

INTRODUCTION 

Para rubber is an agricultural tree crop (Hevea brasiliensis) and is grown on varied pedo-climatic environment in 

traditional rubber growing regions of Kerala and Kanyakumari district of Tamil Nadu over past eleven decades 

contributing ninety per cent of latex production in India (IRS 2013). Now the rubber growing tracts of Kerala is 

almost a third cycle of its cultivation. Thus productivity status of rubber growing soils may vary over time. 

Continuous cultivation of rubber resulted in a decline of soil organic carbon content and soil pH (Abraham et al., 

2001; Ulaganathan et al., 2010). Therefore proper monitoring is essential to understand soil fertility status in rubber 

plantations for region specific soil management practices to improve the soil productivity.  

Delgado and Gomez, 2017 reported that soil’s physical, chemical and biological properties are changing over 

timescale due to modern agricultural practices. According to Doran et al., 1994 the soil productivity is more or less 

related to plant growth and crop yield. Thus managing soil health in a sustainable level can be achieved by 

conducting soil survey at regular intervals. Conventionally managing of soil productivity in rubber plantation is 

primarily based on surveys, analysis of soil samples. But it is usually followed by collecting samples from the fields 

without geographic reference. The results of such traditional survey are usually not useful for future monitoring. 

Recent past availability of satellite remote sensing data and development of geospatial techniques have a significant 

role in mapping and management of soil resources (Singh et al., 2010; Wadodkar and Ravisankar, 2011; Chatterjee 

et al., 2015). Soil fertility variability maps are one of the key inputs required for region specific soil fertility 

management in agricultural crops (Denton et al., 2017; Sharma et al., 2016; Guo et al., 2015; Tagore et al., 2014).  

Large number of scientific studies reported the use of geostatistical modelling technique to assess soil nutrient 

conditions (Chabala et al., 2017; Mousavifard et al., 2013; Nourzadeh et al., 2012; Chen et al., 2011; Wang et al., 

2009). This technique is widely used to model and study spatial variability in soil conditions (Santra et al., 2017; 

Reza et al., 2016; Shit et al., 2016; Marchetti et al., 2012; Panagopoulos et al., 2006; Dayani and Mohammadi, 

2010). In agriculture tree crop like rubber, generation of soil fertility variability maps are vital to understand the soil 

fertility constraint areas and to manage those areas by applying correct dose of chemical fertilizers. In this aim we 

undertook an extensive field survey across rubber growing soils in South India in collaboration with National 

Bureau of Soil Survey and Land Use Planning (NBSS & LUP), Indian Council of Agriculture Research (ICAR) 

with an objective to bring soil test based fertilizer recommendation for entire rubber growing areas in the country 

using geospatial approach. Prior to this, a pilot study was undertaken in rubber growing areas of Kottayam district 
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in Kerala (one of the major NR growing districts in India) by mapping present extent of rubber holdings and 

modelling of soil fertility status of rubber plantations to develop a WebGIS based application of Rubber Soil 

Information System (RubSIS). 

MATERIALS AND METHODS  

Site description 

Kottayam district is located in central Kerala in South India (Figure 1). The location lies between 76
o
21'13.4"E to 

76
o 

59 '54.11"East longitudes and 9
o
23’12.69"N to 9

o
52'1.92" North latitudes with an area of 2201 Sq.km consists 

of five Taluks, viz., Meenachil, Kanjirappally, Vaikom, Changanassery and Kottayam.  About forty nine per cent of 

total geographical area of the study area consists of natural rubber cultivation. The soil types occurring in Kottayam 

district are broadly grouped in to lateritic, riverine alluvium, brown hydromorphic and forest loam. In this district, 

majority of rubber plantations are cultivated in less than 100 m elevation.  About sixty five per cent of rubber areas 

occur in between slope 5-15 per cent. Study area receives plenty of rains from both South-West and North- East 

monsoons. The normal average annual rainfall is around 3200 mm. In addition to rubber plantations coconut, 

paddy, pepper, cocoa, nutmeg and various other spices and food crops are cultivated in the district. The district has 

an undulating topography on eastern parts, midlands and nearly level low lands in the western side and highest 

elevation of the district is 1158m. Rubber plantations are densely distributed all over the district except western side 

which is covered by Ramsar site of Vembanad Lake and backwaters.  

GPS based soil sample collection  

Satellite data of Resourcesat I LISS III sensor with 23.5m spatial resolution (Path and row 100-67, 3
rd

 March 2013) 

was used for mapping of rubber plantations in Kottayam district (Figure 1). Exhaustive field survey was conducted 

across rubber growing regions in the study area to collect soil samples on a 50 ha grid basis. Extreme care was 

taken to collect the samples from a particular grid using satellite-derived rubber distribution maps. Global 

Positioning System and other ancillary maps were used as reference for soil sample collection to get maximum 

representation of soil samples across the rubber growing areas in Kottayam district. For this, administrative 

boundary, road network, important places were vectorized using Survey of India (SOI) toposheets of scale 1:50,000 

scale. Random soil samples were collected on the basis of extent of rubber acreage, accessibility of terrain, road 

network etc. A comprehensive soil sample survey form was prepared to document details of the rubber holdings 

and farmers. Sampling was carried out during the period from December 2012 to January 2013 at 2082 randomly 

sampled locations from the study area (Figure 2). In order to get uniform distribution of soil samples for GIS 

mapping we have overlaid GPS (Garmin Dakota 20) recorded coordinates of soil samples with rubber distribution 

map. Composite soil samples were collected at 0-30cm depth in three different parts of a rubber holding and mixed 

properly. A core sample was also taken for gravel content analyses. Soil samples were subjected to air dry and 

seiwed using mesh size of 0.5 micro meter filter. Then the samples were analysed following standard analytical 

procedures for soil pH, organic carbon, primary, secondary and micronutrients in the laboratories of Rubber 

Research Institute of India (RRII) and NBSS & LUP, ICAR. GIS softwares such as Rolta Geomatica v 10.3.1 and 

ArcGIS v 10.1 were used for satellite data processing, geostatistical mapping and analyses.  

 

 

 

 

 

 

 

   Figure 1.  Study area location                      Figure 2. Soil samples collected from the study area     

overlaid with rubber plantation distribution 

 

 



Geostatistical modelling of soil fertility parameters 

Geostatistical analyst derives a surface using the values from the input samples to predict values for each location in 

the landscape by computing weighted average of the known values in the neighborhood of the point (Krige, 1951). 

Generally kriging algorithm can be expressed by the following formula (ESRI, 2003). 

              n 

Z(k)= ∑ ʎi*Zi 

              i =1 

 

where Z(k) is the value of an unknown location estimated by Kriging. ʎi is the weighting coefficient for a particular 

location and Zi is the known value of a particular location.  Kriging is widely used in geology, hydrology, 

agriculture, soils, environmental monitoring and other fields to interpolate spatial data (Robinson and Metternicht, 

2006; Peng et al., 2013; Antwi et al., 2016). This interpolation is built on the assumption that things that are close 

to one another are more alike than those farther away (known as spatial autocorrelation). This modelling involves 

an exploratory spatial data analysis of soil samples, calculation and modelling of the surface properties of nearby 

samples and surface prediction and assessment of results. 

 

In this study commonly used ordinary kriging interpolation technique was used for prediction of soil fertility 

parameters (total of fourteen soil nutrients). Result of soil data was subjected to statistical analysis to understand the 

normal distribution pattern and transformed as appropriate for mapping of spatial variability in GIS platform. 

Statistical parameters were calculated for this study were the mean, standard deviation (SD), coefficient of variation 

(CV), skewness and kurtosis of the soil samples. We have tested histogram and normal QQ plots of the soil samples 

while doing geostatistical analyses. Statistically valid prediction surface model was generated for each soil fertility 

parameter with cell size of 30m which equals to 0.09 ha of a rubber holding. Measure of the certainty or accuracy 

of the predictions of the result were validated using standard prediction error parameters such as mean error (ME), 

root mean square error (RMSE), root mean square standardized error (RMSSE) and average standard (ASE) error. 

Semi-variogram models obtained with least values of prediction error parameters were considered as measure of 

validity of the analysis. 

Development of WebGIS enabled RubSIS 

WebGIS based fertilizer recommendation for rubber growing regions in the study area was developed based on 

overlaying krigged variability maps of all fourteen soil fertility parameters and soil depth data following the 

guidelines of discriminatory fertilizer recommendation for rubber plantations. Rubber farmers can obtain soil 

fertility status and fertilizer recommendation of a particular rubber growing region either by search of location 

coordinates or by means of administrative division according to age and extent of rubber holding. This online 

platform of Rubber Soil Information System (RubSIS) is developed using an open source WebGIS tools in 

collaboration with Indian Institute of Information Technology and Management - Kerala (IIITM-K). 

RESULTS AND DISCUSSION 

Satellite-derived extent of rubber plantation in Kottayam district for the year 2013 was 1,10,724 ha (Figure 2). 

Analysis of DEM (Digital Elevation Model) and ground truth revealed that majority of rubber holdings in Kottayam 

district falls under the elevation class 0-100m followed by 100-300m and least in >300m elevation.  Results of 

statistical analyses and geostatistical modelling of spatial variability of soil fertility parameters are discussed below. 

Statistical analyses of soil data 

The analysis of normality test of the samples is the prerequisite of kriging interpolation to calculate the valid 

surface prediction models (Antwi et al., 2016; Jemo et al., 2014; Robinson and Metternicht, 2006; Guo et al., 

2015). A statistical summary of different soil fertility parameters analysed for the study is given in Table.1. In this 

study, statistical evaluation of the untransformed soil fertility parameters shown that variations were not normally 

distributed for soil properties of available P, K, Ca, Mg, S, Fe, Mn and Cu as revealed by the test of coefficient of 

variation (CV) and skewness values generated through statistical analyses. Thus data transformation was applied to 

the original values to normalise the variations before spatial interpolation. A logarithmic transformation (natural 

logarithm) was applied prior to prediction modelling for stabilize the variance (Guo et al., 2015; ESRI, 2003; 

Harter, 1961; Royston, 1982; Goovaerts, 1999).  Results indicated Organic Carbon (OC), soil pH, exchangeable Al, 

gravel content, available Zn and B showed near normal distribution. The coefficient of variation (CV) is the ratio of 

the standard deviation to mean expressed as a percentage is a useful measure of overall variability. CV of soil pH 

was least variable (5.38) while available P found to be highly variable (160.3). Available OC and K concentration 

showed CV of 34.53 and 57.24 respectively (Table 1). Among the secondary nutrients, available S showed highly 



variable (CV value of 84.03) followed by available Ca (57.51) and available Mg (51.47). In the case of micro 

nutrients, available Fe was found least variable (29.04) whereas available B and Cu showed highly variable (71.41 

and 70.83) followed by available Mn (45.75) and Zn (42.36).  Statistical analyses indicated moderate to high 

variability of soil fertility parameters of rubber plantations in Kottayam district. The skewness coefficients are zero 

for normally distributed samples. If the data distributions are largely skewed from a normal distribution, data 

transformations are often performed in order to reduce the variability in spatial analyses (Robinson and Metternicht, 

2006; Jondeau and Rockinger, 2003). Among the soil fertility parameter analysed from the study area, available P, 

K Ca, Mg, S and Cu were showed higher values of skewness (Table 1). After logarithmic transformation of 

available P, K, Ca, Mg, S, Fe, Mn and Cu followed a near normal distribution which showed soil samples were 

fitting for geostatistical kriging.  

Table 1. Descriptive statistics of the soil samples analysed from the study area 

Soil parameters Min Max Mean Std. Deviation Skewness Kurtosis CV(%) 

pH 3.9 5.8 4.72 0.25 -0.17 0.31 5.38 

Al 0.03 2.83 0.83 0.43 0.79 0.9 51.16 

Gravel 1.41 43.66 15.4 5.67 0.88 1.96 36.83 

OC 4197.46 119000 52345 18074.75 0.36 0.19 34.53 

Av. P 0.77 578.82 23.87 38.27 6.1 56.21 160.31 

Av. K 0 959.91 192.68 110.29 1.6 3.95 57.24 

Av. Ca 10.27 1416.52 222.48 127.95 1.59 5.56 57.51 

Av. Mg 7.17 217.91 48.67 25.05 1.3 2.82 51.47 

Av. S 0.62 212.7 32.83 27.59 2.02 5.52 84.03 

Av. Fe 3.82 156.93 55.34 16.07 0.46 1.3 29.04 

Av. Mn 2.47 138.99 45.39 20.77 0.38 0.4 45.75 

Av. Cu 0.4 74.37 10.11 7.16 2.12 7.18 70.83 

Av. Zn 0.48 14.42 3.67 1.55 0.83 1.44 42.36 

Av. B 0 6.54 1.92 1.37 0.51 -0.45 71.41 

             N= 2082. Av: Available 

Geostatistical modelling of soil fertility parameters 

Validation of the prediction modelling: Results of standard prediction error parameters and semi-variogram 

models used for geostatistical modelling of soil nutrients to describe the spatial autocorrelation of the soil samples 

are given in Table 2 & 3. The degree of spatial autocorrelation of soil fertility parameters were described by nugget-

to-sill ratio, it is an important index to find the spatial dependencies of soil properties in a region (Cambardella and 

Karlen, 1999; Cation, 2001; Kravchenko, 2003).  The parameters that were obtained from geostatistical analyses of 

the semi-variogram model were the nugget, sill and range. The nugget represents variability at distances smaller 

than the typical soil sample spacing or the value at which the semi-variogram intercepts the y value. Sill represented 

the amount of variation defined by the spatial autocorrelation and it is the value at which the model first levels out. 

The range is the lag distance at which the model first flattens out. If the nugget-to-sill ratio is less than 0.25 per cent 

is regarded to have strong spatial autocorrelation within sample locations (Cambardella et al., 1994; Liu et al., 

2006). The spatial autocorrelation is considered moderate if the ratio is between 0.25 and 0.75 per cent and weak if 

it more than 0.75 per cent. The soil samples analysed for the study area showed moderate spatial autocorrelation 

and no strong degree of spatial association was observed. This was due to the variability of values of soil fertility 

parameter. The spatial dependence of soil fertility parameters revealed that nugget-to-sill ratio for soil pH, gravel 

and exchangeable aluminium were 0.60, 0.72 and 0.78 which gives an indication that spatial dependence was 

moderate to weak. The degree of spatial dependencies of available OC, P and K were moderate in the study area 

which shows 0.57, 0.67 and 0.52 per cent respectively (Table 2). The spatial autocorrelation of secondary nutrients 

of available Ca was weak (0.81) whereas available Mg and S showed moderate spatial dependence (0.67 and 0.72). 

All the parameters under micronutrients showed moderate spatial dependence of nugget-to-sill ratio from 0.33 to 

0.61. Among these micronutrients highest spatial autocorrelation was showed by available Zn (0.33) followed by 

available Mn (0.38).  

If a semi-variogram model satisfies a valid prediction, the cross validation parameters of mean error (ME) and  

mean standardized error (MSE) approaches zero, average standard error (ASE) approaches root-mean-square error 

(RMSE), mean standardized error (MSE) approaches zero, root mean square standardized error (RMSSE) 



approaches one (Granados et al., 2005; Nourzadeh et al., 2012; Chabala et al., 2017; ESRI, 2012). The validation of 

the present study was closely agreed with the values of standard error parameters which were satisfying the 

reliability of prediction of all soil fertility parameters. The values of ME and MSE were close to zero for all soil 

fertility parameters in the study area which indicated the prediction is reasonably unbiased (Table 3). The RMSE 

values were lower and it was close to ASE. The RMSE values were below 1 for all soil fertility parameters except 

gavel content (4.43), Zn (1.20) and B (1.13). The obtained RMSSE values were also close to one for all soil fertility 

parameters indicated none of the parameters were over estimating or under estimating the prediction. Analyses 

closely follow the standard values of cross validation parameters of geostatistical modelling and therefore 

considered prediction of soil fertility parameters were unbiased and reliable. Following results were obtained from 

the analyses using prediction maps. 

 

Table 2. Parameters of semi-variogram models analysed for soil samples from the study area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Av: Available 

 

Table 3.  Cross-validation parameters of geostatistical modelling of soil fertility 

 

 

 

 

 

 

 

 

 

 

 

(ME: mean error., RMSE : root-mean-square error., MSE: mean standardized error., RMSSE: root-mean-square standardized error., 

ASE: average standard error) 

 

Soil 

parameters 

Nugget 

(C0) 

Partail sill (C1) Spatial dependence 

(C0/C0+C1) 

Range  Model 

pH 0.037 0.024 0.60 0.0340 Stable 

Al 0.122 0.033 0.78 0.0650 Stable 

Gravel 15.941 5.988 0.72 0.0507 Circular 

OC 0.180 0.136 0.57 0.0265 Circular 

Av. P 0.490 0.237 0.67 0.0179 Circular 

Av. K 0.145 0.133 0.52 0.0320 Circular 

Av. Ca 0.253 0.058 0.81 0.0270 Circular 

Av. Mg 0.159 0.075 0.67 0.0396 Spherical 

Av. S 0.532 0.201 0.72 0.0273 Stable 

Av. Fe 0.053 0.033 0.61 0.0278 Circular 

Av. Mn 0.078 0.124 0.38 0.0184 Circular 

Av. Cu 0.211 0.201 0.51 0.0576 Circular 

Av. Zn 0.872 1.712 0.33 0.0874 Stable 

Av. B 0.953 0.805 0.54 0.9530 Circular 

Soil parameters ME RMSE MSE RMSSE ASE 

pH -0.00083 0.20 -0.00371 1.005 0.20 

Al -0.00149 0.37 -0.00397 1.033 0.36 

Gravel 0.00928 4.43 0.00191 1.041 4.25 

OC (%) 0.00098 0.50 0.00151 1.025 0.49 

P 0.00001 0.83 0.00014 1.023 0.80 

K 0.00071 0.45 0.00074 1.023 0.43 

Ca 0.00074 0.53 0.00159 0.980 0.54 

Mg -0.00144 0.43 -0.00271 0.990 0.43 

S -0.00101 0.76 -0.00073 0.979 0.78 

Fe 0.00086 0.28 0.00283 1.068 0.26 

Mn 0.00003 0.38 0.00006 1.026 0.37 

Cu -0.00025 0.51 -0.00081 1.002 0.50 

Zn -0.00208 1.20 -0.00078 0.984 1.22 

B -0.00004 1.13 -0.00023 1.016 1.11 

http://www.sciencedirect.com/science/article/pii/S1161030104001340
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Geospatial variability of soil fertility parameters 

Spatial variability maps of different soil fertility parameters for rubber growing regions in Kottayam district are 

shown in Figure 4 (a-n). Majority of NR growing places in the study area exhibited acidic status of soil pH ranging 

from of 3.5 to 5.5 (Figure 4a). Spatial interpolation map of soil pH revealed that up to 90 per cent of area under 

rubber cultivation in Kottayam district exhibited very strongly acidic nature of soil pH (4.5-5.0).  

Rubber growing soils of Kottayam district has adequate available OC content ranging from high to very high 

(Figure 4d). Considerable spatial variability was observed in the OC content, with higher status (45000-75000 

kg/ha) in the eastern and central region of Kottayam district and comparatively medium status (22500-45000kg/ha) 

in the western region. We found that regions where high OC content and soils deeper than one meter are not 

adversely affected if chemical fertilizers are not applied for a few years as evident from several field experiments 

conducted by us. In this district, extent of mature rubber area with high OC status and soil depth above one meter 

was found about 50,765 ha which will make a net saving of Rs 27.4 crore/year (estimate including expense for 

chemical fertilizer and labour charge). Status of available phosphorus (P) and potassium (K) were low in the study 

area (Figure 4e & f). For available P, 87 per cent of the rubber growing area in Kottayam district is low (<30kg/ha), 

11 per cent medium (30-75 kg/ha) and 2 per cent high (>75 kg/ha). Large extent of rubber growing area in 

Kottayam district (69 %) is medium in available K status (150-375 kg/ha). About 29 per cent of the area is low 

(<150 kg/ha) and 2 per cent is high (>375 kg/ha) in available K status.  

Spatial variability of secondary nutrients such as available calcium (Ca), magnesium (Mg) and sulphur (S) were 

also showed low status (Figure 4g-i). Of the total extent of rubber holdings in Kottayam district, 87 per cent is low 

in available Ca status (<300 kg/ha) and the remaining 13 per cent is medium (300-450 kg/ha). Rubber growing 

stretches in Kottayam district is medium in available Mg status (30-75 kg/ha) with 93 per cent area in this class. Of 

the total rubber area, 49 per cent is deficient (<30 kg/ha) and the remaining 51 per cent is sufficient (>30 kg/ha) in 

available S status. Rubber growing regions in the western, central and some parts of eastern side of the study area 

exhibited deficient status of available S. Micronutrients were sufficient for available iron (Fe) manganese (Mn)  and 

copper (Cu), whereas available zinc (Zn) and born (B) revealed deficient in some locations in the study area (Figure 

4j-n). About 35 per cent is deficient (<1.5 kg/ha) in available B and the remaining 65 per cent has sufficient status 

(>1.5 kg/ha).  Deficient status of available B soils was seen in western and eastern side of the study area. Spatial 

variability map of available Zn showed about 73 per cent of rubber plantation extent in Kottayam district has 

sufficient status (>3 kg/ha) and the remaining 27  per cent exhibited low  available Zn status (<3 kg/ha).  

Exchangeable aluminium (Al) content of rubber growing soils in the study area showed 75 per cent is medium (0.5-

1 cmol (+)/ kg), 22 per cent high (1-2.5 cmol (+)/ kg) and 3 per cent low (<0.5 cmol (+)/ kg). High exchangeable 

aluminium content is observed mainly in the south-western parts of the district (Figure 4b). In the case of gravel 

content, about 49 per cent of the rubber growing area in Kottayam district is slightly gravelly (<15%) and 51 per 

cent is medium gravelly (15-35%). Slightly gravelly areas were mainly observed in the eastern part of the district 

whereas medium gravelly areas were concentrated in western part of the study area (Figure 4c). 

Rubber Soil Information System (RubSIS) 

RubSIS is a free of cost online WebGIS application used for soil fertilizer recommendation of rubber growing 

regions in Kottayam district. The site can be accessed through http://rubsis.rubberboard.org.in. The current version 

of the RubSIS application is only for the study area which will be extended to entire NR growing regions in India. 

Application server of RubSIS is designed into home page and a customized interface meant for soil fertilizer 

recommendation. Home page was highlighted to give general information and technical details of soil fertilizer 

recommendation to rubber farmers. Platforms like RubSIS aiming rubber farmers to apply chemical fertilizer only 

to soil fertility constraint areas of rubber plantations. Once rubber plantation attains maturity it becomes a closed 

system and therefore fertility status of rubber holdings may not change much for a longer period. RubSIS is a fine 

example of integration of satellite-derived remote sensing data and GIS for delivering an Information and 

Communication Technology (ICT) tool for rubber farmers. 
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Figure 4(a-n). Geospatial variability 

of soil fertility parameters of rubber 

growing regions in the study area  

a). Soil pH, b). Exchangeable 

aluminium, c). Gravel content, d).  

Organic carbon, e). Available 

phosphorus, f). Available 

potassium, g). Available calcium,  

h). Available magnesium, i). 

Available sulphur, j).  Available iron, k). Available manganese, l). Available copper, m). Available zinc and n). 

Available boron                              

Conclusion 

In rubber plantations, fertility status of soil is one of the key factors that determine its growth and performance. 

Thus monitoring soil health in definite interval is important to understand variability in fertility status of rubber 

holdings. In this study, from the traditional time consuming method of soil fertility interpretation, geospatial 

technology was adopted which ensure better and efficient platform for mapping soil fertility in rubber dominated 

landscape. In order to manage soil fertility in rubber plantations, a systematic monitoring programme may be 

required on a temporal basis. It is also important to use geospatial platform to demarcate soil fertility constraint 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) 



areas easier and faster. Cross validation of spatial prediction of soil fertility parameters showed reliability of the 

prediction with reasonable accuracy. Thus, geostatistical modelling techniques are applicable to investigate spatial 

variability of rubber growing soils in the study area. Application like RubSIS ensures usage of chemical fertilizer 

only to soil fertility constraint areas of rubber plantations which can result in significant reduction in cost of rubber 

cultivation even as environmental pollution due to indiscriminate use of chemical fertilizers is avoided.  
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