
MULTISCALE ANALYSIS OF THE RELATIONSHIP BETWEEN SOCIO-

ECONOMIC STATUS (SES) AND REMOTELY SENSED SPATIAL PATTERNS OF 

URBAN GREEN SPACES (UGS) IN MUMBAI, INDIA. 
 

Vasu Sathyakumara, RAAJ Ramsankarana,b,*, Ronita Bardhanb,c. 
a Department of Civil Engineering, Indian Institute of Technology, Bombay, Mumbai 400076, India. 
b Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India. 
c Centre for Urban Science and Engineering (CUSE), Indian Institute of Technology Bombay, Mumbai 400076, India. 

* Corresponding Author. 

E-mail addresses: techievsk@gmail.com (V. Sathyakumar), ramsankaran@civil.iitb.ac.in (RAAJ Ramsankaran), 

ronita.bardhan@iitb.ac.in (R. Bardhan). 

 

 

KEY WORDS: Landscape Pattern Analysis, Spatial metrics, Scale effect, Grain size, Urban Planning. 

 

ABSTRACT: The lack of necessary policy interventions in the cities of the developing countries result in a 

disproportionate distribution of Urban Green Spaces (UGS), a key component of urban landscape. The socio-

economically affluent neighbourhoods are known to possess a better share of UGS arranged in distinctive spatial 

patterns. Studies relating Socio-Economic Status (SES) and UGS often overlook the aspect of spatial arrangement of 

UGS; this dearth in quality information on UGS can be addressed using remote sensing. With synoptic coverage in a 

near-real time, remote sensing systems aid the computation of spatial metrics that capture the compositional and 

configurational aspects of UGS. However, as the spatial metrics are scale-dependent, the relationship between SES 

and spatial metrics is susceptible to the spatial resolution of the satellite imagery chosen. In this study, the scale 

effects of the Modifiable Areal Unit Problem (MAUP) on the links between SES and the spatial metrics characterizing 

UGS are assessed using satellite images of multiple spatial resolutions, viz. 5m, 15m and 30m. SES of the 

neighbourhoods in Mumbai was assessed using the Socio-Economic Status Index (SESI), based on which the 

neighbourhoods were classified into different SES classes. UGS in Mumbai were extracted from the satellite images, 

and the aspects of density, shape complexity and aggregation of the UGS patches at the neighbourhood level were 

each quantified with a spatial metric. An ordered logistic regression (OLR) was used to assess the probabilistic 

association between SES and the spatial metrics. A resolution-wise comparison of OLR results reveals that the 

relationship between SES and the spatial metrics is indeed influenced by the spatial resolution of the satellite image 

chosen. The study results equip the urban planners with a tool in form of remote sensing-based spatial metrics of 

UGS to reliably predict the SES of a neighbourhood in a shorter time. 

 

1. INTRODUCTION 

 

The cities in the developing countries often see little or no urban planning interventions (M’Ikiugu et al., 2012). The 

rapid pace of urbanization in these cities results in a spatially skewed distribution of natural, social, and economic 

resources, which influence the quality of urban life (QoUL) of its residents (Cohen, 2006; UN, 2013).  One such vital 

component influencing the QoUL is the Urban Green Spaces (UGS). UGS refer to all the vegetation spaces that add 

value to the urban landscape (Bardhan et al., 2016), and are known to enhance urban environmental quality by 

reducing pollution (Gupta et al., 2012), improve public health (Groenewegen et al., 2006), and are vital in mitigating 

urban vulnerabilities (Bardhan et al., 2016). The distribution of such highly beneficial UGS is generally lopsided, 

with the neighbourhoods habituated by the socio-economically weaker sections having a fewer green space per 

inhabitant (Heynen et al., 2006; Krellenberg et al., 2014). This disparity in distribution and configuration of UGS 

among the neighbourhoods belonging to different socio-economic status (SES) is starker in the cities of the 

developing countries, given the lack of necessary planning interventions (De la Barrera et al., 2016). 

 

In general, the studies linking UGS and SES use the highly time-consuming and expensive survey-based methods to 

collect self-reported assessments of UGS (Gupta et al., 2012). Also, these studies in general confine their assessment 

of UGS to the mere presence/absence of green cover in an area (see for example: Gascon et al., 2016) or the proximity 

of UGS to a neighbourhood (see for example: Krellenberg et al., 2014), often ignoring the spatial configuration of 

the UGS. These pitfalls can be overcome with the help of remote sensing. Using the remotely sensed satellite images, 

which offer a repetitive, synoptic coverage of the landscape in a near-real time, the spatial configuration of UGS can 

also be computed by means of indices called spatial metrics (SM) (Huang et al., 2007). Thus, the application of 

remote sensing can add the dimension of spatial arrangement, thereby enhancing the information on UGS available 

to the urban planners. For example, Sathyakumar et al (2017) have used satellite images of 5m spatial resolution to 

identify the relationship between the SM of UGS patches and the SES in the neighbourhoods of Mumbai, whereby 

the neighbourhoods with higher SES are associated with highly disaggregated and complex-shaped UGS patches. 



However, it is well known that spatial metrics, similar to other spatial data, are prone to the scale effects of Modifiable 

Areal Unit Problem (MAUP), by which the spatial patterns studied are affected by the changes in the level of data 

aggregation (Shen et al., 2004; Buyantuyev et al., 2010). The scale effects on spatial pattern analysis occur under 

three scenarios: i) change in resolution (or grain size) only, ii) change in extent only, and iii) change in both resolution 

and extent (Wu, 2004). This implies that the nature of relationship between SES and the SM of UGS may be found 

to vary significantly at different spatial resolutions of the remotely sensed satellite images used. 

 

In this purview, the present study builds on the work described in Sathyakumar et al (2017) by investigating the 

impact of the changing scales on the relation between the SES and the SM of UGS patches in the neighbourhoods of 

Mumbai. Since the extent of analysis is fixed as Mumbai, only the effects of changing the spatial resolution is studied 

in the present work, using the satellite images of multiple spatial resolutions, viz. 5m, 15m, and 30m, which are 

commonly used worldwide for urban applications (Qian et al., 2015). 

 

2. STUDY AREA 

 

Mumbai, the financial capital of India, hosts approximately 12.4 million people (Census, 2011), and is spread across 

458.28 sq km (MCGM, 2016). The city is divided into 88 Census Sections (CS) and comprises two revenue districts- 

Mumbai City and Mumbai Suburban. The Suburban District accounts for about 75% of the population of Mumbai 

(Census, 2011), and has been a part of the city since the 1950s (Pacione, 2006). The civic administration of the city 

is catered by the Municipal Corporation of Greater Mumbai (MCGM). Urban planning of Mumbai is widely under 

the ambit of MCGM, which designs the Development Plans (DP) periodically. However, out of the two DPs 

constituted in 1967 and 1991, only 35% have been actually implemented (MCGM, 2016). As a result, much of 

Mumbai’s current land use is organic, and hence, inconsistent with the planned one (Pethe et al., 2014).  

 

A particularly key issue in the planning of Mumbai is affordable housing. The city attracts a massive influx of 

migrants from economically weaker sections from across the country in search of employment with minimal 

expenditure on accommodation and subsistence (Pacione, 2006). However, the high prices of housing stock in the 

city makes them choose informal settlements, like slums, for dwelling (Bardhan et al., 2015a). As a result, about 42% 

of Mumbai’s population in 2011 lived in slums, which are located mainly along creeks, railway lines, the periphery 

of hills and forests (MCGM, 2016). At the intra-city level, the proportion of slum population to the total population 

is 27.87% and 46.46% for the City and Suburban districts respectively (MCGM, 2016). This indicates the relatively 

better socio-economic status of the city district vis-à-vis the suburban district.  

 

Mumbai’s geography consists of a national park (the Sanjay Gandhi National Park, SGNP) in north, and mangroves 

along its eastern and western shores. Its coast is habituated by fisherfolk, who live in hamlets called ‘Koliwadas’. 

These Koliwadas are located mainly in the north western part of the western suburbs, and are particularly known to 

lack basic civic amenities (Baud et al., 2009). The city also contains a few lakes, hillocks and ridges, specifically in 

the eastern suburbs. Apart from these and a few parks, Mumbai’s urban green spaces are scarce given the limited 

availability of land area (MCGM, 2016). 

 

3. DATA AND METHODS 

 

The study workflow (Fig. 1) comprises two main components-(i) Assessment of SES, and (ii) Characterization of 

UGS. The unit of analysis is ‘census sections’ (CS), a territorial unit used for census operations at the intra-city level 

and the finest resolution at which the census data is available publicly. The CS can be considered as city 

neighbourhoods (Bardhan et al., 2015b), and there are 88 CS in Mumbai. The data used and detailed methodology of 

the study are presented in the following sections. 

 

3.1 Data Description 

 

A map of Mumbai’s CS classified based on their SES, given by Sathyakumar et al (2017), was used as the source 

of information on their SES, wherein the CS were classified into 5 clusters as Very Low SES (VLS), Low SES (LS), 

Moderate SES (MS), High SES (HS), and Very High SES (VHS) based on their Socio-Economic Status Index 

(SESI) scores. SESI scores range from 0 to 100, where 0 and 100 signify the lowest and highest-ranking CS in terms 

of SES. This map is shown in Figure 2 and the descriptive statistics of these 5 SES clusters is given in Table 1. The 

boundaries of the CS was prepared in a digital form (“shapefile”) using QGIS v2.14.0, based on the maps provided 

online by the Chief Electoral Officer, Maharashtra State (CEO Maharashtra, 2017). 



 

Fig.1. The methodological framework adopted for the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. SES Clusters of census sections in Mumbai. 

(Source: Adapted from Sathyakumar et al (2017)) 



Table 1. Descriptive statistics of the SES Clusters (Source: Adapted from Sathyakumar et al (2017)). 

SES Cluster N Median SESI Std. Dev. Min. SESI Max. SESI 

Very Low SES (VLS) 15 28.30 9.09 0 35.07 

Low SES (LS) 27 47.45 4.79 38.88 53.87 

Moderate SES (MS) 21 62.33 3.78 55.60 67.32 

High SES (HS) 14 74.32 2.77 70.04 79.79 

Very High SES (VHS) 11 86.18 6.04 80.79 100 

Total 88 56.20 20.19 0 100 

 

To assess the UGS in Mumbai, a set of three IRS Resourcesat-2 Linear Imaging Self Scanner (LISS-IV) images of 

5m spatial resolution were used. The details of these three images are given in Table 2. The LISS-IV images have 

spectral information in the wavelength ranges of 0.52-0.59µm, 0.62-0.68µm, and 0.77-0.86µm, corresponding to the 

green, red and Near Infra-Red (NIR) wavelengths of the electromagnetic spectrum. Each of these images partly cover 

Mumbai, and were acquired during the months of October and November 2011, and are the cloud-free ones of 

Mumbai acquired closest to the census enumeration period of February 2011. Further, these three images of 5m 

resolution were resampled to generate two more sets of 15m and 30m spatial resolutions, using the ‘degrade’ function 

of the ERDAS Imagine 2014 package. Thus, there were 9 satellite images in total (i.e. three per each of the three 

spatial resolutions). 

 

Table 2. Details of the IRS Resourcesat-2 LISS IV images used in the study. 

 

3.2 Characterization of UGS 

 

3.2.1 Extraction of UGS: The urban green spaces (UGS) were extracted using the Normalized Difference Vegetation 

Index (NDVI), which is calculated as shown in Eq. 1. 

NDVI= 
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
               (1) 

where NIR and Red denote the spectral reflectance in Band 3 (0.77-0.86µm) and Band 2 (0.62-0.68µm) respectively. 

The NDVI values range from -1 to 1, where the pixels with values above 0.2 represent vegetation class (Javadnia et 

al., 2009; Tang et al. 2015). Accordingly, a threshold of 0.2 was chosen to extract a binary image consisting of 

vegetation and non-vegetation pixels from each of the 9 images. These images were analysed individually as they 

belonged to different dates. Subsequently, the three resultant images for each spatial resolution were mosaicked using 

the ‘mosaic’ function of the ERDAS Imagine 2014 package to generate maps of UGS in Mumbai at 5m, 15m and 

30m spatial resolutions. 

 

3.2.2 Computation of Spatial Metrics: In this study, three spatial metrics (SM), viz. Patch Density (PD), area 

weighted mean fractal dimension (FRAC_AM), and normalized landscape shape index (nLSI), were used, that 

capture the aspects of density, shape complexity and aggregation of UGS patches in a CS respectively. Here, a UGS 

patch refers to a contiguous group of UGS pixels in a CS, defined by an 8-cell rule (i.e. all the 8 surrounding pixels 

were considered for patch membership). A description of the three SM used is given in Table 3. The SM were 

computed at the CS-level from each of the three UGS maps (of different spatial resolutions) using FRAGSTATS v4.2 

package (McGarigal et al., 2012). 

 

3.3 Probabilistic Analysis between SES Clusters and Spatial Metrics of UGS 

 

The relation between the SES of a CS and the SM of its UGS was analysed using an ordered logistic regression model 

separately for each of the three spatial resolution cases. In each case, the SES category of a CS was considered as 

dependent variable while the SM of its UGS computed at that spatial resolution acted as the independent variables. 

The resultant odds ratio associated with each spatial metric denotes the relative impact of that spatial metric on 

predicting the SES of a CS. Also, based on the coefficients estimated and the values of the three spatial metrics 

computed earlier (refer section 3.2.2), the probability of a CS belonging to each of the 5 SES categories was estimated. 

 

Date of Pass 

 

Path ID 

 

Row ID 

 

Sub-Scene 

October 10, 2011 94 59 A 

November 3, 2011 94 59 B 

October 10, 2011 94 59 C 



Finally, the results of the three models (corresponding to the three spatial resolutions) were compared to assess the 

relative change in the significance levels of the 3 SM in predicting the SES category. 

 

Table 3. Description of the spatial metrics used (Source: McGarigal, 2015). 

Spatial 

Metric 
Formula Description Remarks 

Patch Density 

(PD) 
PD = 

𝒏

𝒂
 * 100 

where n is the number of UGS patches in a 

CS, and a is the area (in ha) of that CS. 

Expressed in number of 

patches per ha of CS. 

Area-weighted 

Mean Fractal 

Dimension 

(FRAC_AM) 

FRAC_AM = 

∑ (
𝑎𝑖

𝐴
) (

2 ln 0.25 𝑝𝑖

ln 𝑎𝑖
)𝑖=𝑛

𝑖=1  

where n is the number of UGS patches in 

the CS, A is the total area of UGS patches 

in that CS, 𝑎𝑖 and 𝑝𝑖 denote the area and 

perimeter of patch i respectively. 

Unitless; Takes values in 

range of 1 to 2; 1 signifies 

simple geometry, whereas 

2 signifies a convoluted 

geometry. 

Normalised 

Landscape 

Shape Index 

(nLSI) 

nLSI = 
𝑷 − 𝒎𝒊𝒏 𝑷

𝒎𝒂𝒙 𝑷−𝐦𝐢𝐧 𝑷
 

where P is the total perimeter of the UGS 

patches in a CS; min P and max P are 

computed based on the total area of UGS 

patches in a CS, given as A; min P 

represents the perimeter of the UGS patch 

of area A if the patches were maximally 

compact; max P represents the perimeter of 

the UGS patches with the total area A, if the 

patches were maximally disaggregated. 

Unitless; Takes values in 

range of 0 to 1; 0 signifies 

that the patches are 

maximally compact, 

whereas 1 signifies that the 

patches are maximally 

disaggregated. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Mapping of UGS  

 

Three maps of UGS in Mumbai extracted using the NDVI at the spatial resolutions of 5m, 15m and 30m are given in 

Figures 3, 4, and 5 respectively. In all these maps, the CS in the north-western part of the western suburbs and those 

adjoining the SGNP are rich in green cover with almost no fragmentation, signifying that vast portions of these CS 

are not urbanized. The hillocks and mangroves in the eastern suburbs are conspicuous on the map, appearing as 

composite green blocks. The southern part of the city district, one of the oldest parts of Mumbai, has sparse green 

cover. Also, the slum neighbourhoods in the city are observed to be devoid of vegetation. In Figures 3, 4, and 5, the 

UGS maps for the CS numbered 42 (belonging to Low SES) and 46 (belonging to Very High SES) at all three 

resolutions used are given as insets for comparison purposes. In all these three figures, it can be seen that CS 46 has 

a higher patch density, more complex-shaped patches, and relatively more disaggregated patches than the CS 42. It 

is confirmed by their respective PD, FRAC_AM, and nLSI values at all three resolutions. Also, from Figures 3,4, and 

5, three major observations can be made as the resolution becomes coarser: i) the smaller UGS patches are not 

identified, ii) the UGS patches appear to have relative simpler shapes, and iii) the UGS patches appear to be more 

disaggregated. The non-detection of smaller UGS patches at coarser resolution is understandable given the high 

degree of heterogeneity in terms of land cover in a hyper dense city like Mumbai (Oyana et al., 2014). Hence, the CS 

7 at 15m resolution has no identifiable UGS patches, although at 5m resolution five of them are identified. Similarly, 

at 30m resolution, apart from CS 7, CS numbered 10, 12 and 26 also appear to be devoid of UGS although they had 

at least one UGS patch each at 15m resolution. The use of a larger window size also smoothens the edges of the UGS 

patches, thereby making them appear with relatively simpler shapes. Similarly, at coarser resolutions, due to the non-

detection of smaller but contiguous green spaces among the greater UGS patches, they appear to be more 

disaggregated. These observations are confirmed in the mean values of the SM as well (Table 4). As resolution 

becomes coarser (i.e. 5m to 30m), PD and FRAC_AM decrease while nLSI increases. It is worth noting that the 

variation of PD across the resolutions should be read in the context of varying definition of a patch in terms of area. 

 

Table 4. Mean of each SM of CS in Mumbai for different spatial resolutions. 

Spatial Resolution (m) 
Mean of Spatial Metrics for the 88 CS 

PD (per ha of CS) FRAC_AM nLSI 

5 166.55 1.276 0.169 

15 49.29 1.229 0.284 

30 16.55 1.185 0.311 

 



         Fig. 3. Map of UGS in Mumbai extracted from                 Fig. 4. Map of UGS in Mumbai extracted from 

              satellite images of 5m spatial resolution.      satellite images of 15m spatial resolution. 

Fig. 5. Map of UGS in Mumbai extracted from satellite images of 30m spatial resolution. 

 

4.2 Association between Spatial Metrics of UGS and SES 

 

4.2.1 At 5m Spatial Resolution: Table 5 gives the results of the ordered logistic regression associating SES with the 

three spatial metrics computed at 5m spatial resolution. From the results, it is observed that all three spatial metrics 

show a significant likelihood of association with the SES clusters. However, as suggested by the odds ratio associated 

with each spatial metric, only FRAC_AM (OR=79204.081 95%CI 45.83-2.322E+08) and nLSI (OR=1350.07 95%CI 



7.26-5.109E+05) predicted well the odds of a CS belonging to a higher SES cluster. Thus, an increase of 0.01 unit in 

the FRAC_AM of a CS, keeping the values of other metrics constant, increased the odds of that CS belonging to a 

higher SES cluster by 11.94%; similarly, an increase of 0.01 unit in the nLSI of a CS, keeping the values of other 

metrics constant, increased the odds of that CS belonging to a higher SES cluster by 7.47%. These results imply that 

the shape complexity and aggregation of UGS in a CS predicted its SES better, vis-à-vis their density. The predicted 

probabilities of the association between SES and the two spatial metrics, FRAC_AM and nLSI, is shown in Figure 

6. It is observed from Figure 6a that for lower values of FRAC_AM, a CS had almost the same probability of 

association with all the SES categories, and as the value increased, the probability of LS appeared to be the highest. 

However, at around a FRAC_AM value of 1.27, the probabilities associated with lower SES started falling while 

those for higher SES started rising sharply. For values of FRAC_AM above 1.40, the probabilities associated with 

MS, HS, and VHS were high, suggesting that CS enjoying a higher SES tended to have UGS patches of more complex 

shapes. Figure 6b shows that for lower values of nLSI, the probabilities were higher for LS and VLS; on the other 

side of the spectrum, for higher values of nLSI, the probabilities were higher for VHS and HS. The curves for lower 

and higher SES appeared to be inflecting at an nLSI value of 0.45. These results suggest that CS with a lower SES 

tended to have more aggregated UGS patches while those with a higher SES tended to have more disaggregated UGS 

patches. 

 

4.2.2 At 15m Spatial Resolution: Table 6 gives the results of the ordered logistic regression associating SES with 

the three spatial metrics computed at 15m spatial resolution. The results show that only PD and FRAC_AM exhibit 

a significant likelihood of association to the SES clusters. However, as suggested by the odds ratio associated with 

the two spatial metrics, only PD (OR=1.019 95%CI 1.004-1.034) predicted well the odds of a CS belonging to a 

higher SES. An increase of 1 unit in the PD of a CS, keeping the values of other metrics constant, increased the odds 

of that CS belonging to a higher SES cluster by 1.9%. These results implies that, at 15m spatial resolution, density of 

UGS patches in a CS predicted its SES better vis-à-vis aggregation and shape complexity of those patches. The 

predicted probabilities of the association between SES and PD is shown in Figure 7. It is observed that low values of 

PD of UGS were associated with high probabilities of LS and VLS. As the value of PD increased, the probabilities 

associated with higher SES categories also began to rise. At higher values of PD, the probabilities associated with 

VHS and HS were the highest, suggesting that CS with a higher SES tended to have more UGS patches. 

  

4.2.3 At 30m Spatial Resolution: Table 7 gives the results of the ordered logistic regression associating SES with 

the three spatial metrics computed at 30m spatial resolution. The results show that only FRAC_AM and nLSI exhibit 

a significant likelihood of association to the SES clusters. As suggested by the odds ratio associated with the two 

spatial metrics, both FRAC_AM (OR=442.5 95%CI 2.321-128865.15) and nLSI (OR=236.636 95%CI 10.07-

7583.258) predicted well the odds of a CS belonging to a higher SES cluster. Thus, an increase of 0.01 unit in the 

FRAC_AM of a CS, keeping the values of other metrics constant, increased the odds of that CS belonging to a higher 

SES cluster by 6.3%; similarly, an increase of 0.01 unit in the nLSI of a CS, keeping the values of other metrics 

constant, increased the odds of that CS belonging to a higher SES cluster by 5.6%. These results imply that the shape 

complexity and aggregation of UGS in a CS predicted its SES better, vis-à-vis density. The predicted probabilities of 

the association between SES and the two spatial metrics, FRAC_AM and nLSI, is shown in Figure 8. It is observed 

from Figure 8a that for lower values of FRAC_AM, the probability associated with VLS was the highest. However, 

in the FRAC_AM value range of 1.05 to 1.31, the probability associated with LS appeared to be the highest. For 

values of FRAC_AM approximately above 1.32, the probabilities associated with MS, HS, and VHS were high, 

suggesting that CS with a higher SES tended to have UGS patches of more complex shapes. Figure 8b shows that for 

lower values of nLSI, the probabilities were higher for VLS and VLS; on the other side of the spectrum, for higher 

values of nLSI, the probabilities were higher for VHS and HS. The curves for lower and higher SES appeared to be 

inflecting at an nLSI value close to 0.6. These results suggest that CS with a lower SES tended to have more 

aggregated UGS patches while those with a higher SES tended to have more disaggregated UGS patches. 

 

Based on the above results, it is observed that the relative importance of each SM with respect to predicting the SES 

of a CS varies with spatial resolution at which the UGS are mapped. For example, at 5m and 30m, the results show 

that FRAC_AM and nLSI are significantly associated with SES clusters, while at 15m resolution PD is the only 

significant SM associated with SES. Comparing the apparently similar results of 5m and 30m resolutions, it can be 

observed that the significance of FRAC_AM in predicting the SES has decreased considerably. The reason for this 

is the earlier mentioned fact that at larger window sizes, the UGS patches appear to have smoother edges, thereby 

making the patches appear in relatively simpler shapes. The significant variation in the results of each spatial 

resolution signify that the relationship between the SES of a CS in Mumbai and the SM of the UGS in that CS is 

indeed susceptible to the effects of changing scales, particularly changing resolutions. Hence, it is imperative that the 

relationship identified between these remote sensing-based SM and the SES is taken in the context of the spatial 

resolution of the data used. 

 

 



Table 5. Ordered Logistic Regression Model for SES and the spatial metrics computed at 5m spatial resolution. 

Variable Value p 
Odds ratio 

(OR) 

OR Lower 

bound (95%) 

OR Upper 

bound (95%) 

Coefficients      

PD 0.005 0.055* 1.005 0.99 1.01 

FRAC_AM 11.280 0.004*** 79204.08 45.83 2.322E+08 

nLSI 7.208 0.008*** 1350.07 7.26 5.109E+05 

Intercepts      

VLS | LS 14.74 0.01  

LS | MS 16.37 0.00  

MS | HS 17.48 0.00  

HS | VHS 18.58 0.00  

*Significant at p < 0.1       Residual Deviance: 261.9635 

***Significant at p < 0.01       AIC: 275.9635 

 

 

Table 6. Ordered Logistic Regression Model for SES and the spatial metrics computed at 15m spatial resolution. 

Variable Value p 
Odds ratio 

(OR) 

OR Lower 

bound (95%) 

OR Upper 

bound (95%) 

Coefficients      

PD 0.018 0.014** 1.019 1.004 1.034 

FRAC_AM 4.322 0.066* 75.364 0.811 8417.935 

Intercepts      

VLS | LS 4.57 0.12                              

LS | MS 6.15 0.04  

MS | HS 7.19 0.02          

HS | VHS 8.28 0.00  

*Significant at p < 0.1       Residual Deviance: 262.9786 

**Significant at p < 0.05       AIC: 274.9786  

   

 

Table 7. Ordered Logistic Regression Model for SES and the spatial metrics computed at 30m spatial resolution. 

Variable Value p 
Odds ratio 

(OR) 

OR Lower 

bound (95%) 

OR Upper 

bound (95%) 

Coefficients      

FRAC_AM 6.092 0.027** 442.500 2.321 128865.15 

nLSI 5.467 0.001*** 236.636 10.070 7583.258 

Intercepts      

VLS | LS 7.2 0.04  

LS | MS 8.9 0.01  

MS | HS 9.9 0.00  

HS | VHS 11.0 0.00  

**Significant at p < 0.05              Residual Deviance: 249.2137 

***Significant at p < 0.01       AIC: 261.2137 

 



Fig. 6. Predicted probabilities of occurrences of SES clusters against FRAC_AM (a) and nLSI (b) at 5m resolution. 

 

 

 

 

 

 

 

Fig. 7. Predicted probabilities of occurrences of SES clusters across the range of PD computed at 15m resolution. 

 Fig. 8. Predicted probabilities of occurrences of SES clusters against FRAC_AM (a) and nLSI (b) at 30m resolution. 

 

5. CONCLUSION 

 

This work is intended to build on the study presented in Sathyakumar et al (2017) wherein the capability of remote 

sensing-based SM of the UGS in the CS of Mumbai in predicting the socio-economic status (SES) of CS was tested. 

As spatial metrics, like other spatial data, are prone to the scale effects of the MAUP, it was necessary to analyse the 

impact of the spatial resolution of the satellite images used on the relationship identified between the SM of UGS and 

the SES. Hence, the said study was expanded for multiple resolutions, viz. 15m and 30m. The results show that 

though the remote sensing-based SM can significantly predict the SES, their relative importance varies with the 

resolution; at 5m and 30m resolutions, FRAC_AM and nLSI are significant, while at 15m, only PD is significant. 

Thus, it is demonstrated that the relationship identified is indeed susceptible to the effects of changing resolutions, 

and that it should always be addressed in the context of the spatial resolution used. 

 

REFERENCES 

 

Bardhan, R., Sarkar, S., Jana, A., & Velaga, N.R., 2015a. Mumbai slums since independence: Evaluating the policy 

outcomes. Habitat International, 50, pp. 1–11. 

Bardhan, R., Kurisu, K., & Hanaki, K., 2015b. Does compact urban forms relate to good quality of life in high density 

cities of India? Case of Kolkata. Cities, 48, pp. 55–65. 

Bardhan, R., Debnath, R., & Bandhopadhyay, S., 2016. A conceptual model for identifying the risk susceptibility of 

urban green spaces using geo-spatial techniques. Modelling Earth Systems and Environment, 2(3), 144. 



Baud, I. S. A., Pfeffer, K., Sridharan, N., & Nainan, N., 2009. Matching deprivation mapping to urban governance in 

three Indian mega-cities. Habitat International, 33(4), pp. 365–377. 

Buyantuyev, A., Wu, J., & Gries, C., 2010. Multiscale analysis of the urbanization pattern of the Phoenix metropolitan 

landscape of USA: Time, space and thematic resolution. Landscape and Urban Planning, 94(3–4), pp. 206–217. 

Census, 2011. 2011 Census Data. Office of Register General and Census Commissioner of India, New Delhi. 

CEO Maharashtra (2017). Maps of Assembly Constituencies in Mumbai. Retrieved July 19, 2017, from 

https://ceo.maharashtra.gov.in/maplinks/maps.aspx 

Cohen, B., 2006. Urbanization in developing countries: Current trends, future projections, and key challenges for 

sustainability. Technology in Society, 28(1–2), pp. 63–80. 

De la Barrera, F., Reyes-Paecke, S., Harris, J., Bascunan, D., & Farias, J. M., 2016. People’s perception influences 

on the use of green spaces in socio-economically differentiated neighborhoods. Urban Forestry and Urban Greening, 

20, pp. 254–264. 

Gascon, M., Cirach, M., Martinez, D., Dadvand, P., Valentin, A., Plasencia, A., & Nieuwenhuijsen, M. J., 2016. 

Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: 

The case of Barcelona city. Urban Forestry and Urban Greening, 19, pp. 88–94. 

Groenewegen, P. P., van den Berg, A. E., de Vries, S., & Verheij, R. A., 2006. Vitamin G: Effects of green space on 

health, well-being, and social safety. BMC Public Health, 6, 149. 

Gupta, K., Kumar, P., Pathan, S. K., & Sharma, K. P., 2012. Urban neighbourhood green index- A measure of green 

spaces in urban areas. Landscape and Urban Planning, 105(3), pp. 325–335. 

Heynen, N., Perkins, H.  A., & Roy, P., 2006. The political ecology of uneven urban green space. Urban Affairs 

Review, 42(1), pp. 3–25.  

Huang, J., Lu, X. X., & Sellers, J. M., 2007. A global comparative analysis of urban form: Applying spatial metrics 

and remote sensing. Landscape and Urban Planning, 82(4), pp. 184–197. 

Javadnia, E., Mobasheri, M. R., & Kamali, G. A., 2009. MODIS NDVI quality enhancement using ASTER images. 

Journal of Agricultural Science and Technology, 11(5), pp. 549–558. 

Krellenberg, K., Welz, J., Reyes-Packe, S., 2014. Urban green areas and their potential for  social  interaction– a  case  

study  of  a  socio-economically  mixed  neighbourhood  in  Santiago  de  Chile. Habitat International, 44, pp. 11-21. 

McGarigal, K., 2015. FRAGSTATS Help. Retrieved July 19, 2017, from 

http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf 

McGarigal, K., Cushman, S.A., & Ene, E., 2012. FRAGSTATS :  Spatial  Pattern  Analysis  Program  for  Categorical  

and  Continuous  Maps (Version 4.2) [Software]. Retrieved July 19, 2017, from 

http://www.umass.edu/landeco/research/fragstats/fragstats.html 

MCGM, 2016. Report of Draft Development Plan-2034. Municipal Corporation of Greater Mumbai, Mumbai. 

M’Ikiugu, M. M., Kinoshita, I., & Tashiro, Y., 2012. Urban Green Space Analysis and Identification of its Potential 

Expansion Areas. Procedia - Social and Behavioral Sciences, 35, pp. 449–458. 

Oyana, T. J., Johnson, S. J., & Wang, G., 2014. Landscape metrics and change analysis of a national wildlife refuge 

at different spatial resolutions. International Journal of Remote Sensing, 35(9), pp. 3109–3134. 

Pacione, M., 2006. Mumbai. Cities, 23(3), pp. 229–238. 

Pethe, A., Nallathiga, R., Gandhi, S., & Tandel, V., 2014. Re-thinking urban planning in India: Learning from the 

wedge between the de jure and de facto development in Mumbai. Cities, 39, pp. 120–132. 

Qian, Y., Zhou, W., Yu, W., & Pickett, S. T. A., 2015. Quantifying spatiotemporal pattern of urban greenspace : new 

insights from high resolution data. Landscape Ecology, pp. 1165–1173. 

Sathyakumar, V., Ramsankaran, RAAJ., & Bardhan, R., 2017. Relationship between Socio-Economic Status (SES) 

and remotely sensed spatial patterns of Urban Green Spaces (UGS) in Mumbai, India. Submitted for publication. 

Shen, W, Jenerette, G. D., Wu, J., Gardner, R. H., 2004. Evaluating empirical scaling relations of pattern metrics with 

simulated landscapes. Ecography, 27(4), pp. 459-469. 

Tang, B.-H., Shao, K., Li, Z.-L., Wu, H., & Tang, R., 2015. An improved NDVI-based threshold method for 

estimating land surface emissivity using MODIS satellite data. International Journal of Remote Sensing, 36:19-20, 

pp. 4864-4878. 

United Nations (UN), 2013. World Economic and Social Survey 2013: Sustainable Development Challenges. United 

Nations, New York. 

Wu, J., 2004. Effects of changing scale on landscape pattern analysis: Scaling relations. Landscape Ecology, 19(2), 

pp. 125–138. 

https://ceo.maharashtra.gov.in/maplinks/maps.aspx
http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf
http://www.umass.edu/landeco/research/fragstats/fragstats.html

