
 
 

Page | 1  
 

Algorithm development for retrieval of biophysical parameter from ISRO’s future  
GISAT Mission  

 
Rahul Nigam1*, Bimal K. Bhattacharya1 and R.P. Singh2  

1Agriculture and Land Eco-system Division (BPSG) 
2 Land Hydrology Division (GHCAG)   

Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area  
Space Applications Centre (ISRO) Ahmedabad – 380 015 

 

ABSTRACT 

The booming development of land-surface ecosystems modeling and environmental monitoring 

systems has resulted in an urgent demand for high-quality, long-term consistent biophysical 

parameters such leaf area index (LAI). Canopy radiative transfer (CRT) based methodology has 

been developed to retrieve agricultural LAI at spatial scale at regular temporal interval. ProSail 

CRT model was customized for future ISRO’s GISAT (Geo-stationary Imaging Satellite) MX-VNIR 

spectral bands. MX-VNIR cover spectral range from 450-520 (B1), 520-590 (B2), 620-680 (B3), 

770-860 (B4), 710-740 (B5) to 845-875 (B6) nm. The model was calibrated using two years of 

measured ground data over six ground sites representing diverse cropping pattern and 

representing different agro-climatic zones in India. The model was further customized for GISAT 

MX-VNIR bands using AVIRIS-NG data to evaluate its performance at spatial scale. CRT model 

inverted to retrieve LAI over Kota region to evaluate performance of developed methodology and 

respective MX-VNIR bands using AVIRIS-NG data. Retrieved LAI showed RMSE of 0.48 for 

B2B3B4 bands combinations with measurement. The RMSE increased for B2B3B6 and 

B2B3B4B5 bands combinations. The bands combination of B2B3B4 was found to be best for 

retrieval of LAI. The developed methodology will be used to generate operational agricultural LAI 

at regular interval using GISAT MX-VNIR data. 
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1.    Introduction 

Leaf area index (LAI), defined as one half of the total leaf surface area per unit horizontal ground 

surface area (Chen & Black, 1992), measures the amount of leaf material in an ecosystem, which 

imposes significant controls on photosynthesis, respiration, rain interception, and other processes 

(Running, 2000). Consequently, LAI is a key variable that links vegetation to the terrestrial 

ecosystem productivity model (Marie et al., 2011), energy, and mass exchange between the land 

surface and the atmosphere (Sellers et al., 1997). LAI is one of the primary measures of 

biophysical characteristic of vegetation used in process-based models to characterize plant 

canopies through remote sensing (Bonan,1993). LAI estimates are used for two basic purposes: 

(1) as an ecophysiological measure of the photosynthetic and transpirational surface within a 
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canopy, and (2) as a remote sensing measure of the leaf reflective surface within a canopy. 

Currently, two approaches are widely used to estimate LAI from satellite data (Propastin and 

Erasim, 2010). The first uses empirical or semi-empirical statistical relationships between LAI and 

spectral vegetation indices (Liu et al., 2014). These indices are designed as a combination of 

surface reflectance to maximize information about canopy characteristics and minimize 

interference factors from the atmosphere and soil. The second approach is the inversion of a 

radiative-transfer model that simulates surface reflectance from canopy structure parameters 

(e.g., LAI), soil, leaf bio-physical-optical properties, and view illumination geometry (Xiao, et al, 

2013). Moreover, simulated lookup tables (LUTs) (Shabanov et al., 2005) and trained neural 

networks (NNs) (Bacour et al, 2006; Walthalla et al., 2004) are commonly used to simplify the 

process of deriving radiative-transfer models and to improve the efficiency of inversion. In 

practice, LAI retrieval from remotely sensed data faces two major difficulties: (1) vegetation 

indices approach a saturation level asymptotically when LAI exceeds 2 to 5, depending on the 

type of vegetation index; (2) there is no unique relationship between LAI but rather a family of 

relationships, each a function of canopy characteristics. To address these issues, a few studies 

have been carried out to assess and compare various vegetation indices in terms of their stability 

and their prediction power of LAI in various part of world (Baret and Guyot, 1991, Broge and 

Leblanc, 2000; Tian & Chen, 2010). The crop-specific sensitivity of spectral reflectance 

relationships to canopy geometry (e.g. leaf angle distribution and clumping) and leaf properties 

(e.g. dry matter and mesophyll structure) and the site-specific sensitivity to atmospheric and 

background influences must be properly modeled in order to simulate canopy spectral signature 

through physical canopy radiative transfer models. At present in India no operational mechanism 

is available to retrieve LAI as a product from Indian satellite. To address present demand as well 

as to get operational product from Indian satellite a study was carried out to demonstrate a 

methodology to retrieve LAI from ISRO’s future mission such as GISAT. To address 

aforementioned limitation, the objectives of this present study were (i) to develop an algorithm to 

retrieve LAI from ISRO’s future GISAT mission, (ii) to test the develop algorithm using AVIRIS 

data and (iii) validation of retrieved LAI with in situ data.     

2. Study area 

In the present study Kota (Rajasthan) has been selected to test the developed methodology for 

LAI retrieval as this site was covered in airborne AVIRIS mission. Kota site represents a 

homogeneous crop area and dominated with wheat crop, mustard and chickpea crops and lies 
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under Central Plateau & Hill Region (CPHR). Airborne AVIRIS-NG campaign over Kota was 

conducted on 5th February 2016. The site details are shown in Figure 1. 

 

 

 

Figure 1. Study area for in situ and airborne AVIRIS-NG observations  

 

2.1 GISAT specifications 

The proposed specification for GISAT is given in Table 1 (Anonymous, 2014).  

Table 1. Proposed specification for GISAT Mission 

Sensor SNR / NEdT IGFOV (m) Range (nm) Bands (nm) 

 

MX-VNIR >200 42 450-860 B1: 450-520, 

B2: 520-590 

B3: 620-680 

B4: 770-860 

B5: 710-860 

B6: 845-875 

 

HyS-VNIR >400 158 357-1100 Δʎ≈ 4 nm 

HyS-SWIR >400 256 900-2500 Δʎ≈ 7 nm 

MX-LWIR NEdT<0.15K 1200 700-1350 B1: 710-760, 

B2: 830-870, 

B3: 940-980, 
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B4: 1030-

1130, 

B5: 1150-

1250, 

B6: 1300-

1350 

 

 To retrieve regular LAI over agricultural area MX-VNIR bands are planned to be used due to its 

high temporal resolution.    

3. Data used 

3.1 In situ measurements  

The following crop parameters were measured during agricultural season during field 

measurement campaign. 

1. Phenological stage of the crop 7. Leaf size/dimensions 

2. Leaf area index 8. Crop height (cm) 

 

3. Mean tilt angle 

 

9. Chlorophyll index 

 

4. Leaf chlorophyll content (µg cm-2 of 

fresh leaf weight) 

10. Soil reflectance 

5. Leaf equivalent water thickness (cm) 

 

11. Crop reflectance 

 

6. Leaf dry matter content (g cm-2) 12. Crop photographs 

 

 

3.2 Airborne data 

In this study Airborne Visible-Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) 

hyperspectral data along with in situ data during the flight time has been used. AVIRIS-NG has 

425 spectral bands between 380 nm to 2500 nm. The spatial resolution is varying from 4 m to 8 

m as per the altitude of the flight. The AVIRIS-NG instrument uses most advanced state-of the-

art detector array and grating for dispersion of light. In this study atmospherically corrected L-2 
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data over Kota region was used. The AVIRIS-NG provides data from 375 nm to 2500 nm. Hence 

all six MX-VNIR bands were convoluted from AVIRIS-NG data for the present study. This dataset 

act as surrogate data to evaluate the performance of all MX-VNIR bands for retrieval of LAI.     

4. Methodology 

4.1 Canopy radiative transfer (CRT) model 

One dimensional (1-D) canopy radiative transfer (CRT) simulation model, PROSAIL, is the 

combined form of PROSPECT and SAIL. The PROSPECT simulates reflectances at leaf level 

and SAIL (Scattering by Arbitrary Inclined Leaves) addresses the directionality. The PROSPECT 

pioneered the simulation of directional–hemispherical reflectances and transmittances 

(Schaepman-Strub et al., 2006) of various green monocotyledonous and dicotyledonous species, 

as well as senescent leaves (Verhoef and Bach, 2003), over the vegetation sensitive solar 

spectrum from 400 nm to 2500 nm (Jacquemoud and Baret, 1990). It is primarily based on the 

representation of the leaf as one or several absorbing thin plates with rough surfaces giving rise 

to isotropic scattering (Allen et al., 1969). In PROSPECT inputs are leaf structure parameter (N), 

chlorophyll (a + b) content (Cab), leaf equivalent water thickness (Cw), leaf dry matter content (Cm) 

and leaf size to crop height (Sl). The absorption of light by photosynthetic pigments which is pre-

dominant in the visible (VIS) spectrum assumed to be entirely caused by chlorophylls, leaf water 

content (Cw) and dry matter. These model input variables define the optical properties of leaf using 

leaf mesophyll and biochemical information. Since leaf reflectance, leaf transmittance, and soil 

reflectance are three wavelength-dependent input variables of SAIL, the implementation of this 

model to retrieve biophysical variables from canopy reflectance spectra at given solar and viewing 

angles in a defined relative azimuthal plane requires at least three times as many variables as 

wavelengths. As a consequence, the inversion of SAIL is generally impracticable unless several 

viewing angles are available. To reduce the dimensionality of the inverse problem and to assess 

the canopy biochemistry, SAIL was coupled with PROSPECT to derive PROSAIL (Baret et al., 

1992). SAIL is one of the earliest canopy reflectance models (Verhoef, 1984) and was coupled 

with PROSPECT early in the 1990s to derive PROSAIL (Jacquemoud et al., 2009). The SAIL 

simulates canopy reflectances as a function of leaf area index (LAI), leaf inclination angle (LIA), 

hot spot parameter (SL), horizontal visibility (vis), sun zenith angle (θs), view zenith angle (θv), 

relative azimuth angle (φsv) and soil albedo (ρs). The coupling simply consists in passing the output 

leaf reflectance and transmittance of the PROSPECT model into the SAIL model to simulate the 

whole spectro-directional canopy reflectance field. The soil spectral or directional reflectance is 

also required as input to SAIL.  
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4.2 Forward simulation  

The CRT model was run in forward mode to generate reflectance for different leaf area index 

(LAI) values from 1 to 4 with an interval of 0.5 with no change in other input parameters. The 

generated simulated reflectance showed unique spectral signature for 400-2500 nm wavelength 

for each LAI value as shown in Figure 2. The mean (µ) and standard deviation (σ) also computed 

for all wavelength. The standard deviation was for blue spectral band vary from 0.0005 to 0.001, 

green 0.001 to 0.04, red 0.05 to 0.35, red edge 0.35 to 0.36 and NIR 0.35 to 0.24 further gradually 

decreases in SWIR 1 and SWIR 2 spectral band. The maximum deviation was observed in red 

edge, red and NIR spectral band region. In all these spectral bands change in leaf area index 

alters the absorption and transmission value with varying magnitude. The blue region does not 

show much change with varying LAI due to its sensitivity to chlorophyll content only. This region 

remains less photosynthesis efficient than red band as after excitation with blue photon, the 

electron always decays extremely rapidly by heat release to a lower energy level that red band 

produces without heat loss. Green and red bands showed more sensitivity towards LAI. In plant 

their absorption is not only sensitive to chlorophyll content but also show to other 

photosynthetically active pigments. Rest of the bands showed high sensitivity for LAI value as 

their penetration within canopy as well as reflection due to total internal refraction were more and 

well correlated with canopy vigour.    

 

Figure 2. Simulated reflectance with varying LAI  
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4.3 Model performance over GISAT MX-VNIR spectral bands 

Spectral response function of all bands were integrated into model to simulate reflectance for 

GISAT six MX-VNIR (B1: 450-520, B2: 520-590, B3: 620-680, B4: 770-860, B5: 710-740, B6: 

845-875 nm) spectral bands. For spectral bands all six spectral bands Gaussian function was 

considered as spectral response function. CRT model was run in forward mode with specific 

ground data as an input to simulate crop specific reflectance for MX-VNIR bands. The ground 

measured spectral signature from 400 to 2500 nm were also convoluted to six MX-VNIR bands. 

Model simulated and ground measured reflectance over different crops were compared.   

4.4 Model inversion  

The various model input parameters listed in Table 2 were divided into number of intervals within 

their ground observed lower and higher limits to cover whole dynamics of selected crop growth. 

The limits had been fixed on the basis of field measurements over various selected crop during 

2014-16 and only leaf structure parameter was taken published data (Nigam et al., 2014; Fang et 

al., 2003; Houborg and Boegh, 2008). For agro-climatic regions, two distinct soil spectral libraries 

were generated from field observations which were used as an input for running the model over 

a selected zone. All the combination of different inputs according to their limits and intervals 

resulted into 1,500,00 input scenarios for all selected crops. The model was run in forward mode 

to generate simulated reflectances for four MX-VNIR spectral bands for all the scenarios for 

respective soil types of the region. Each set of simulated band reflectances generated through 

forward runs correspond to unique set of input parameters. Since present study aimed at retrieval 

of LAI, a look up table (LUT) was constituted from this simulated database of canopy reflectances 

and respective input parameters. The observed surface reflectances in LAI sensitive bands from 

MX-VNIR were then used to retrieve LAI through LUT inversion. An inversion technique based on 

least square approach was used to get the unique LAI for a given set of AVIRIS observed 

reflectances over agricultural crop. In this study LAI sensitive MX-VNIR bands were used for 

retrieval of LAI. In this study MX-VNIR data for LAI sensitive bands were generated using AVIRIS-

NG (Air-borne Visible and Infrared Imaging Spectrometer-Next Generation) data. Through 

inversion of these observed bands from AVIRIS-NG convoluted to MX-VNIR, LAI over agricultural 

area were retrieved.  A cost function (S) was used that represented the sum of square differences 

between convoluted AVIRIS pixel band reflectances and respective model simulated band 

reflectances. Minimum of the cost function was obtained using least square approach which gives 
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unique value of LAI for a given set of observed reflectances. This approach is similar to the 

variational method in which difference of error is minimized but differ in the sense of observation 

error covariance matrices. This may be the scope of future research under that variational 

approach (Barker et al., 2004) and can be used to retrieve the LAI from observed reflectance. In 

variational method, cost function, which is a function of total variance, is minimized. Here cost 

function is  
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(3b) 

where ρb1sim, ρb2sim, ρb3sim and ρb4sim are simulated reflectances from b1, b2, b3 and b4 respectively 

and ρb1satref, ρb2satref, ρb3satref and ρb4satref are satellite observed reflectances in the respective bands. 

In this study equation 3a and 3b respectively used for three and four bands minimization. For 

minimum value of cost function (S), we differentiate S with respect to LAI as (Barker et al., 2004): 

0
dLAI

dS
    (4) 

In this study different band combinations as per their sensitivity selected for retrieval of LAI.  

Table 2. Input parameters to run canopy radiative transfer model 

Model Units Symbol Range  

 

PROSPECT 

   

Leaf structure 

parameter  

- - - N 1-3 

Chlorophyll a+b 

content 

µg cm-2 Cab 20-80 

Leaf equivalent 

water thickness 

Cm Cw 0.01-0.07 

Leaf dry matter 

content 

g cm-2 Cm 0.001-0.025 

Leaf size to crop 

height 

- - - Sl  
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SAIL 

   

Leaf area index - - - LAI 0.5-6 

Leaf inclination 

angle 

- - - LIA 5-60 

Hot spot parameter - - - SL 0.5//LAI 

Horizontal visibility m VIS 5000 

 

4.4 Calibration of model coefficient 

The CRT model uses refractive index, leaf albedo, absorption coefficient for chlorophyll, water 

and dry matter to simulate reflectance for varying inputs. These coefficients were generated using 

lab based study over various vegetation leaves under varying leaf biochemical conditions. In 

model these coefficients were generated using pure spectral signature of different vegetation type 

specific to agriculture crop due to its variation in one dimension. In this study refractive index and 

coefficients for biomass has been calibrated using ground based input and spectral signature 

collected over different crop type at various crop stage. After calibrating with ground data in 

consideration with all selected crop for rabi and Kharif. Model was run in forwarded mode over 

various crop and compared with independent field dataset as shown in Figure 3. 
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Figure 3. Comparison of measured and simulated spectral profile over different crops in 

selected agro-climatic zones 

 

 5. Results 

5.1 Sensitivity of Model for MX-VNIR bands    
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After integration of all six bands and its spectral response characteristic into model one-

dimensional sensitivity analysis was carried out for all intrinsic input parameters of model. The 

one dimensional sensitivity of model inputs for all six bands is shown in Table 3. Here, typical 

mean values of parameters over observational sites at Kota were considered for sensitivity 

analysis. Parameters vary from its fixed value up to ±50% at the interval of 10%. The simulated 

reflectances of six bands showed a different range of sensitivity towards LAI. The B1 (450-520 

nm) showed coefficient of variation (CV) 2.2% and B2 band (520–590 nm) showed 6.6%. B3 (620-

680 nm) showed high CV of 11.7% whereas B5 (710-740 nm) band again showed CV of 4.0% 

and both B4 bands (770-860 nm) and B6 (845-875 nm) again showed high CV of 16%. The B2 

and B5 again showed low deviation between ±2% deviation in reflectance while, B3 and B4 & b6 

showed deviation between -12 to +10 and -18 to +20%, respectively. Leaf equivalent water 

thickness (Cw) showed no deviation in all six bands due to its sensitivity to SWIR bands. The 

deviation of ±50% in leaf internal structure parameter (N) showed a wide deviation in reflectances 

for all the six bands and it ranges from −21 to 25. The deviation in leaf chlorophyll (a + b) content 

(Cab) contributes to deviation of 80 to −28% for B1 and B2 band reflectances respectively and 60 

to −15% for B3 and B5 spectral bands respectively. Both B4 & B5 bands showed no change in 

the reflectance with change in chlorophyll content as they are mostly affected by change in leaf 

thickness and water content. Leaf dry matter content (Cm) showed a moderate deviation in all 

bands except in B4 & B5. These bands reflectances showed deviation between 21 to -16%. As 

Cm attributes to combination of all biochemical properties of leaf, it affects reflectances of all four 

bands. The shape of the absorption coefficient spectra slowly decreases between 450 nm and 

800 nm for growing leaves. The absorption peak in the blue (420-480 nm) is probably caused by 

polyphenols (also called phenolic compounds), in particular flavonols (Cerovic et al., 2002). These 

compounds still exist in fresh foliage, but chlorophylls and carotenoids hide them. However, 

polyphenols are often correlated with leaf mean area (LMA), except for leaves on aging plants 

(Meyer et al., 2006). Hence, stronger absorption between 400 nm and 450 nm is also attributed 

to dry matter also. Deviation in leaf inclination angle (LIA) produces wide deviation in all the six 

bands of MX-VNIR. The range of percent deviation in all the bands is between 24 and −30. The 

one dimensional sensitivity analysis demonstrates the contribution of all leaf parameters towards 

six MX-VNIR band reflectances. The analysis showed that all six bands are sensitive to input 

model parameters except than leaf water thickness. Hence any change in input parameters 

excess leaf water content can be well captured through MX-VNIR band reflectances. Sensitivity 

revealed that four bands B2, B3, B4, B5 and B6 showed maximum sensitivity for LAI. Moreover, 

B4 and B6 both lie in NIR region only with different band width.  
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Table 3. One dimensional sensitivity analysis of CRT model inputs for six MX-VNIR bands 

Variable % 

deviation 

in variable 

value 

 % deviation in band reflectances  

B1 B2 B3 B5 B4 B6 

Leaf structure 

parameter (N) 

 

-50 to +50 

 

-8 to 

+25 

 

-10 to +16 

 

-5 to 

+20 

 

-15 to 

+25 

 

-21 to +19 

 

-17 to 

+15 

Chlorophyll 

a+b 

content(Cab) 

 

-50 to +50 

 

+35 to -

14 

 

+80 to -28 

 

+58 to -

11 

 

+60 to -

15 

 

--- 

 

--- 

Leaf 

equivalent 

water 

thickness (Cw) 

 

-50 to +50 

 

-- 

 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

Leaf dry 

matter 

content(Cm) 

 

-50 to +50 

 

+0.9 to 

-0.6 

 

+3 to -3 

 

+0.7 to -

0.3 

 

+1 to -

1.1 

 

+21 to -15 

 

+21 to 

-16 

Leaf area 

index (LAI) 

 

-50 to +50 

 

+2 to -2 

 

-0.4 to +4 

 

+12 to -

10 

 

+4 to -4 

 

-18 to +20 

 

-19 to 

+22 

Leaf 

inclination 

angle (LIA) 

 

 

-50 to +50 

 

+20 to -

23 

 

+24 to -30 

 

+24 to -

23 

 

+21 to -

24 

 

+20 to -23 

 

+20 to 

-23 

 

5.2 Validation of retrieved LAI using MX-VNIR   

In this study out of six MX-VNIR bands five showed sensitivity towards LAI at different capacities. 

Among all six bands B4 and B6 were lie in NIR region hence at time only one band was selected 

for retrieval of LAI. Total three combinations of bands (1) B2, B3, B4; (2) B2, B3, B6 and (3) B2, 

B3, B4, B5 were used to retrieve LAI using CRT model and AVIRIS convoluted bands over two 

sites at Kota region. The retrieved LAI using inversion of CRT model showed RMSE of 0.48 (18% 

deviation from measured mean) for B2B3B4 bands combination with ground measurements. 

RMSE will further increases to 1.0 (35%) and 1.6 (52%) respectively for B2B3B6 and B2B3B4B5 
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band combination. Fang et al. (2003) (RMSE = 1.0), Koetz et al. (2005) (RMSE = 0.5), Houborg 

et al. (2009) (RMSE = 0.65) over different vegetation types. Yi et al. (2008) particularly showed a 

RMSE = 0.7 over wheat crop using canopy radiative simulation model. The validation of retrieved 

LAI is shown in Figure 4.  

 

Figure 4. Validation of retrieved LAI from ground measurements 

 

The histogram of agricultural LAI showed four (B2B3B4B5) bands always showed maximum value 

at higher range of LAI (Figure 5). Whereas, both three (B2B3B4 & B2B3B6) showed maximum 

value between 3 to 4 in both the sites.  

  

Figure 5. Histogram of LAI from retrieved LAI using various combination of MX-VNIR bands 

 

The spatial distribution of retrieved LAI using different band combinations showed in Figure. From 

Figure 6 it was quite evident that four band combination always give higher LAI values and 

overestimation as compare to field measurements. In both the sites of Kota 60 percent agricultural 

area covered with wheat crop rest 25% comprises of crop such as mustard, chickpea, peas and 

coriander. The all bands able show low and high value of all crops. But band combination of 

B2B3B4B5 showed overestimation in all type of crops. The band combination of B2B3B4 showed 
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maximum heterogeneity at spatial scale as compare to other two. For the LAI value 1 to 2 first 

two band combination showed less difference on histogram but higher value it showed different 

behavior.   

 

Site 1 

   

Site 2 

   

 

Figure 6. Spatial distrubution of leaf area index (LAI) over agricultulral area using three different 

set of MX-VNIR bands 

 

6. Discussion 

The above develop methodology is able to retrieve agricultural LAI over different crop type under 

agro-climatic conditions. However, its use for crops such as transplanted rice with standing water 

or crops under sub-mergence conditions is need to be further tested. Moreover, during high-wind 
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on clear days at the instance of satellite overpasses lead to alter observed satellite reflectances 

due to bending of leaves beyond the limit of leaf inclination angle considered for specific crop as 

an input for CRT model. It may result into different set of reflectances for LAI class. Prime 

advantage of simulation approach is the reduced independence on time and site-specific data but 

at the same time it requires sufficient number of appropriate spectrally and radiometrically 

accurate bands to get better results (Jacquemoud et al., 2009). As the reflectance data govern 

the accuracy of LAI estimation, inversions using coarse resolution data under the assumption of 

spatially homogeneous pixel will also introduce an error in the LAI estimation (Garrigues et al., 

2006; Tian et al., 2002). The first contribution of the proposed algorithm is the dynamic update of 

LAI in agriculture season with identified three MX-VNIR bands. As a result, the retrieved LAI 

values could be used in crop and land surface model to update the crop growth monitoring and 

radiative fluxes. The method proposed here has taken advantage of routinely produced satellite 

data to provide LAI estimation. However, there still exist several limitations which need to be 

mentioned. The first limitation is related to the satellite data themselves, which are constrained 

by instabilities in observation such as calibration errors, atmospheric, cloud contamination, view-

illumination geometry effects, and saturation of reflectance in dense canopies. Moreover, the 

quality flags accompanying the LAI and surface reflectance products do not infallibly identify their 

quality. In present study retrieved LAI is validated with limited number of sites in two agro-climatic 

zones. Consequently, this will not represent all agricultural systems of India. Moreover, the field-

measured LAI values collected from existing research networks are each the mean value of 

several discrete sampled values. Certain errors associated with scale effect still exist. The ideal 

LAI data used to validate the retrieved LAI should be derived from high resolution imagery using 

ground based imager. This topic will be explored in future research.  

7. Conclusions 

The pressing need for crop yield modeling and agricultural monitoring has led to a demand for 

high-quality, long-term consistent LAI products. However, currently available global LAI products 

may not meet the requirements from the viewpoint of accuracy, consistency and spatial resolution. 

Presently global various LAI products from CYCLOPES (1 km), ECOCLIMAP (1 km), 

GLOBCARBON (10 km) and MODIS (1 km) showed RMSE of 0.95, 1.56, 1.15 and 1.19 

respectively over various vegetation types (Garrigues et al., 2008).   Moreover, LAI gaps along 

with lag period for agricultural user due to various reasons also impose restrictions on the further 

application of data. The spatial resolution of GISAT (50 m) is adequate enough to ensure relatively 

accurate retrievals of LAI of agricultural crop at regional and high temporal scale. Presently in 
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India AWiFS has a 5-day revisit period which may cause loss of data due to persistent cloud or 

fog to retrieve LAI at all major crop growth stages. But GISAT daily data will provide more 

possibility to get clear sky data. The develop methodology will be used to generate LAI from future 

proposed Indian Geostationary Imaging Satellite (GISAT) mission. 
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