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ABSTRACT 

 

Multi-resolution analysis (MRA) has been successfully used 

in image processing with the recent emergence of 

applications to texture classification and segmentation. 

Several studies have explored the utility of wavelet-based 

MRA features in various applications of image compression, 

image denoising and classification of natural textures. 

Recently, the curvelet and contourlet transforms have 

emerged as new multi-resolution analysis tools to deal with 

non-linear singularities present in the image. This paper 

explores and proposes a texture based classification of 

remotely sensed images using features derived from the 

curvelet and contourlet transforms. These features 

characterize the textural properties of the image and are used 

in a classifier to recognize different texture classes. Using 

these MRA based feature descriptors class separability is 

defined in feature space. The results are compared with 

wavelet based statistical features.  

 

1. INTRODUCTION 

 

Texture analysis is often discussed in image processing 

domain, however most methods do not exploit the fact that 

texture occurs at various spatial scales. Often used technique 

such as the gray level co-occurrence statistics is limited to 

altering inter-neighbor spacing and to four directions of 

neighbors and hence does not capture the texture very well. 

This is particularly true in case of remotely sensed images 

and therefore it is necessary to adopt a proper model that can 

overcome the above limitation in order to segment remotely 

sensed images.  

Multi-resolution analysis allows for the preservation of an 

image according to certain levels of resolution or degree of 

blurring. MRA allows for the zooming in and out on the 

underlying texture structure. Therefore, the texture 

extraction is not affected by the size of the pixel 

neighborhood. This multi-resolution quality is one of the 

reasons why wavelets have been useful in textural analysis 

(Jain and Farrokhnia 1991; Unser 1991; Laine and Fan 

1993). 

Wavelet based MRA showed great effect when dealing with 

1D and 2D signals with point singularity features. Wavelets 

can only capture limited directional information due to its 

poor orientation selectivity (Welland, 2003) and might not 

capture enough directional information in remotely sensed 

images. In order to avoid this shortcoming and process 

images of high dimension more effectively, curvelet (Candes 

and Donoho, 2000) and contourlet transforms (Do and 

Vetterli, 2002) are used. This paper explores and proposes a 

texture based classification scheme using moment based 

features derived from curvelet and contourlet transforms. 

 

2. MRA FOR IMAGE ANALYSIS 

 

2.1 Curvelet Transform 

 

Wavelet transform decomposes the image into a series of 

high-pass and low-pass filter bands, and extracts directional 

information that captures horizontal, vertical and diagonal 

details. However, these three linear directions are limiting 

and might not capture enough directional information in 

remotely sensed images.  

Curvelet transform is a multi-scale and multi-directional 

transform with wedge shaped basis functions. Basis 

functions of wavelets are isotropic and thus they require 

large number of coefficients to represent the curve 

singularities. Curvelet basis functions are wedge shaped and 

have high directional sensitivity and anisotropy (Candes and 

Donoho 2000). The curvelets at different scales and 

directions span the entire frequency space and their basis 

functions are considered as grouping of wavelet basis 

functions locally into linear structures so that they can 

capture the curvilinear discontinuity more efficiently. 

Curvelet basis functions can be viewed as a local grouping 

of wavelet basis functions into linear structures so that they 

can capture the smooth discontinuity curve more efficiently 

as demonstrated in Fig. 1. 



 
Fig. 1. Non-linear approximation of a 2-D piecewise smooth 

signals using wavelets and curvelets (Do and Vetterli, 2002) 

 

 
Fig. 2. Multiplication of FFT data with curvelet window, the 

data on a wedge shaped support is mapped into a rectangle 

(Nguyen and Chauris, 2010) 

 

 

According to Gibb’s phenomenon discontinuities destroy the 

sparsity of a Fourier series (Mallat, 1989). Therefore more 

number of coefficients is required to reconstruct a 

discontinuity within good accuracy. As wavelets are 

localized and multi-scale, they perform much better in one 

dimension, but because of their poor orientation selectivity, 

they do not represent higher dimensional singularities 

effectively. The curvelet transform is organized in such a 

way that most of the energy of the object is localized in just 

a few coefficients, but there is no basis in which coefficients 

of an object with an arbitrary singularity curve would decay 

faster than in a curvelet frame. This rate of decay is much 

faster than that of any other known system, including 

wavelets (Cand`es and Demanet, 2003). This faster decay 

gives optimally sparse representations which in turn is 

suitable for image reconstructions. Curvelets partition the 

frequency plane into dyadic sub-bands and (unlike wavelets) 

sub-partition those into angular wedges which again display 

the parabolic aspect ratio. Hence, the curvelet transform 

refines the scale-space viewpoint by adding an extra 

parameter; orientation, and operates by measuring 

information about an object at specified scales and locations.  

The curvelet transform has gone through two major 

revisions. First generation (Cand´es and Donoho, 2000) used 

a complex series of steps involving the ridgelet analysis of 

the radon transform of an image. Their performance was 

very slow; therefore, an improved version was developed 

which is known as Fast Discrete Curvelet Transform 

(FDCT). In this paper, wrapping based fast discrete curvelet 

transform (Cand`es et al., 2006) is used.  

The wrapping based FDCT takes a 2D image as an input in 

the form of a Cartesian array f[m, n], where 0 ≤ m<M, 0 ≤ 

n<N where M and N are the dimensions of the array. The 

following are the steps of applying wrapping based FDCT 

algorithm (Cand`es et al., 2006); 

1) Apply the 2D FFT to an image to obtain Fourier 

samples F[m, n] 

2) For each scale j and angle l, form the product  

Uj,l [m, n] F[m, n] (Fig. 2). 

3) Wrap this product around the origin and obtain 

coefficients in frequency domain. 

4) Apply IFFT to get the curvelet coefficients in 

spatial domain. 

 

2.2 Contourlet Transform 

 

The contourlet transform is a new extension to wavelet 

transform in two dimensions and is constructed using non-

separable and directional filter banks (DFB). Its expansion is 

composed of basis images oriented at varying directions in 

multiple scales, with flexible aspect ratios. With this set of 

basis images, it effectively captures the smooth edges that 

are the dominant features in natural images with only a small 

number of coefficients. First, a wavelet-like transform for 

edge detection and then a local directional transform for 

smooth segment detection are used to implement the 

contourlet transform (Do and Vetterli, 2005). With this 

insight, a Pyramidal DFB structure is constructed, in which 

the Laplacian Pyramid (LP) is used to capture the point 

discontinuities, followed by a DFB to link point 

discontinuities into linear structures. 

Fig. 3 describes a multi-scale and directional decomposition, 

where band-pass images from LP are input to directional 

filter banks to extract the directional information. This is 

iterated on the coarser image for further decomposition into 

sub-bands. By combining these two steps, the support size of 

the PDFB basis functions is changed from one level to the 

next according to the curve scaling relation. 
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Fig. 3. Contourlet filter bank (Do and Vetterli, 2005) 

 

Bandpass images from the LP are given to a DFB so that 

directional information can be captured. The scheme can be 

iterated on the coarse image. The combined result is a 

double-iterated filter bank that decomposes images into 

directional sub-bands at multiple scales. 

Since the multi-scale and directional decomposition stages 

are decoupled in the discrete contourlet transform, we can 

have a different number of directions at different scales, thus 

providing a flexible multi-scale and directional expansion of 

remotely sensed images. 

In this paper, the algorithm depicted in Fig. 3 is 

implemented using orthogonal and bi-orthogonal filter banks
 

of wavelet and contourlet tools
 
in MATLAB. 

 

3. METHODOLOGY 

In this study texture classification algorithm consists of three 

main steps: segmentation of pure regions, extraction of the 

most discriminative moment based statistical texture 

features, and creation of classifier that will identify the 

various regions. The regions are initially cropped manually 

to obtain pure samples of each texture, then wavelet, 

curvelet and contourlet transforms are applied and a set of 

moment and energy based texture descriptors are extracted 

from the transformed coefficients. These features 

characterized the textural properties of the images and 

classification is done using minimum distance to mean 

classifier.  

 

4. RESULTS AND ANALYSIS 

 

To evaluate the performance, a simulated image using 

Brodatz textures (Fig. 4) and an IRS-1C panchromatic 

(spatial resolution of 5.8m) image of Mumbai city (Fig. 5) 

are utilized. This is suitable for texture analysis since its 

resolution is not adequate to extract individual roads or 

narrow roads but groups of them render a visible checked 

pattern in dense urban areas.  

Total five classes (water, shallow water, high build-up area, 

low or partially build-up area and open area) are considered 

for feature extraction. Next, Euclidean distance between 

normalized feature vectors for each pair of classes for 

wavelet, curvelet and contourlet methods are computed. 

These distances are represented as class separability 

measures. Table 1 indicates the relative separation between 

classes in the texture feature space. 

 

 

 
(a) Original image compiled from Brodatz samples 

(Brodatz, 1966) 

 

 
(b) Segmented image using curvelet method 

Fig. 4. Segmentation of synthetic image 



 
(a) Original image 

 

 
(b) Segmented image using wavelet method 

 

 
(c) Segmented image using contourlet method 

 

 
(d) Segmented image using curvelet 

method 
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Fig. 5. Segmentation on IRS 1C image  

 

Table 1: Performance in terms of class separability 

Class pairs 

Distance between feature 

descriptors 

Wavelet Curvelet Contourlet 

Water-Shallow 

Water 
4.1 8.6 7.5 

Water-High Buildup 

area 
5.2 8.8 7.6 

Water-Low Buildup 

area 
3.2 7.3 6.1 

Water-Open area 4.8 9.1 7.8 

Shallow Water-High 

Buildup  
4.8 9.4 8.1 

Shallow Water-Low 

Buildup  
6.2 13.5 10.5 

Shallow Water-

Open Area 
2.2 8.4 8.4 

High Buildup–Low 

Buildup 
5.4 8.2 7.8 

High Buildup-Open 

Area 
5.1 11.9 9.5 

Low Buildup-Open 

Area 
5.9 7.4 6.3 

 

5. CONCLUSIONS 

In this paper, the application of wavelet, contourlet and 

curvelet based MRA is presented for textural segmentation. 

The idea behind proposed method is to effectively represent 

curvilinear discontinuities in satellite images using curvelet 

and contourlet based MRA techniques. Textural information 

in terms of statistical moments and energy are extracted at 

various scales and in different directions with the help of 



curvelet and contourlet coefficients. The multi-scale 

curvilinear approach yielded better class discrimination for 

all the class pairs. It is observed that curvelet and contourlet 

based features are more powerful than wavelet based 

features for all the class pairs.  The classes are properly 

segmented with sharper boundaries. The results are very 

encouraging and suggest that proposed method can be 

pursued further for SVM based classification. 
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