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ABSTRACT: Weighting function which uses squared inverse of the distance as a parameter in the estimation of missing 

precipitation records are extensively applied for the past five decades. Despite its wide acceptability, it suffers from several 

drawbacks like the inability to account for the existence of negative spatial autocorrelation, thereby many conceptual 

enhancements which are distance-based are brought in to overcome the drawbacks. Similarly, regressive models are another 

set of techniques which are traditionally applied, which also suffers from the conceptual limitation of defining the function 

behaviour prior to applying it. To overcome this, the non-parametric ranking system is induced in regressive models.  

 A detailed study is carried out to compare eight univariate techniques, three belonging to Inverse distance weighting 

methods (IDWM) and rest five to regressive schemes. Precipitation record from 10 gauging stations from the districts of 

Palakkad, Thrissur, and Malappuram of Kerala, India are selected and used to test the efficiency of the improvements carried 

out in the existing techniques.  

Results suggest that no distinct regressive methods can be adjudged as the best overall. Orthogonal regression performed 

well for all stations having a least Inter-quartile range (IQR) despite having a non-zero median and appreciable amount of 

standard deviation. Among distance weighted methods, CCWM (coefficient of correlation weighting method) outperformed 

traditional IDWM and IEWM (Inverse exponential weighting method) by a large margin having an inter-quartile range close 

to zero. A generic conclusion cannot be arrived because no specific method is found to be suitable for all situations. It 

depends on the nature of the data that is being used. 

KEYWORDS: Distance weighting schemes; Parametric and non-parametric regression; Missing completely at random; 

Orthogonal and geometrical regression; Five-number summary 

 
1.INTRODUCTION 

 

Statistical studies done to quantify and predict climate change using meteorological data should be free from missing 

observations that are measured over a long period of time. Missing data records can bring a considerable amount of bias, 

induce stressfulness during data analysis and reduce the efficiency of analysis. Traditional approaches applied on time series 

data, containing missing values use case deletion and imputation with mean value approaches. By default, statistical 

packages apply list-wise deletion, that is to completely remove the case which contains a missing data (Dow and Eff, 2009). 

This process decreases the representativeness of the analysis. 

Presence of gaps in precipitation series is a common problem while dealing with long-term data (Allison, 2002). There are 

several data filling techniques available, ranging from simple mean to mathematically complex multiple imputation methods 

(Singh, 1986). Numerous studies in past three decades have been carried out for comparing several univariate, bivariate, 

stochastic, deterministic and data-driven approaches (Tung and Asce, 1984). 

The purpose of current study is to compare five regressive schemes and three distance weighted methods, followed by 

performance assessment by five-number summary with mean and standard deviation instead of using popular error measures 

such as root mean squared error (RMSE), mean absolute error (MAE) and goodness of fit (R2). 
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2. MISSING COMPLETELY AT RANDOM (MCAR) IN RAINFALL DATA SERIES 

 

The literature is flooded with a generic explanation of missing data mechanism. However, it is necessary to understand and 

contemplate the issue in relation to precipitation data. Therefore, a brief discussion on MCAR mechanism is presented 

here.If the probability with which the missing data occurring in a specific variable is completely non-dependent on any other 

observed variable and is also non-dependent to the variable with the missing value is called MCAR. In other words, 

missingness in the variable does not follow any pattern and its unsystematic (Rubin, 1976). For example, when data are 

missing for the station which their recordings were lost in reporting. This hypothesis can be tested by separating the missing 

and complete cases and examine the characteristics of the two groups. If the characteristics are approximately equal for both 

groups, then MCAR hypothesis holds good. Else it needs to be rejected. It is the only missing data mechanism that can be 

quantitatively calculated using Little's chi-square test, also known as Little’s MCAR test. 

 

In Little’s chi-square test, the null hypothesis states the data to be missing randomly with no specific pattern if the 

significance level denoted by p-value is at a level of 0.05. To put in simple terms, if the value is less than 0.05, data are not 

missing at random.  Little’s MCAR was applied on the entire dataset considering it as 21X12 matrix and value obtained was 

about 0.998. A bigger p-value indicates weak proof against the null hypothesis, thereby failing to reject it. In the current 

study, it can be concluded that no pattern exists. 

 

3.METHODS  

Inverse distance weighting method (IDWM) is one of the oldest methods for estimation of missing data in the field of 

hydrological sciences (Teegavarapu and Chandramouli, 2005). With improvements in computational ability, several 

variants of IDWM are proposed and adopted with emphasis on choice of weighting function in order to capture the 

arbitrariness in missing data. 

3. 1 Inverse distance weighting method (IDWM) 

The reciprocal distance method is given by  

 
𝑋𝑚 =

∑ 𝑋𝑖𝑑𝑚𝑖
−2𝑛

𝑖=1

∑ 𝑑𝑚𝑖
−2𝑛

𝑖=1

 (1) 

 

where Xm is the value of precipitation at the base station, n is the number of stations, Xi is the value at station i, dmi is the 
distance from the location of station i to station m.  

3.2 COEFFICIENT OF CORRELATION WEIGHTING METHOD (CCWM)  

The weighting function in IDWM, 𝑑𝑚𝑖
−2 is replaced by 𝑅𝑚𝑖 in (2), where 𝑅𝑚𝑖 is the coefficient of correlation (Teegavarapu 

and Chandramouli, 2005). 

 

𝑋𝑚 =
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𝑛
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3.3 INVERSE EXPONENTIAL WEIGHTING METHOD (IEWM) 

The weighting function in IDWM, 𝑑𝑚𝑖
−2 is replaced by  𝑒𝑚𝑖

−2𝑑 for IEWM (Teegavarapu and Chandramouli, 2005). 

 

𝑋𝑚 =
∑ 𝑋𝑖𝑒𝑚𝑖

−2𝑑𝑛
𝑖=1

∑ 𝑒𝑚𝑖
−2𝑑𝑛
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 (3) 

 

  



REGRESSIVE METHODS 

 

In recent times, enormous interest has arisen in the estimation of missing data using single imputative regressive techniques. 

The following techniques were applied in this study for the assessment of their ability in filling the missing data. 

a) Parametric ordinary least-squares regression (POLSR) 

b) Non-parametric ranked regression (NPRR) 

c) Non-parametric simplified Theil’s method (NPSTM) 

d) Orthogonal regression (OR) 

e) Geometric mean functional regression (GMFR) 

 

3.4 PARAMETRIC ORDINARY LEAST-SQUARES REGRESSION (POLSR) 

Parametric least-square regression having a straight line functional form is the most widely used modelling method. It has 

been applied in wide range of studies, which are beyond its direct scope. The definition, derivation, the criterion is explained 

with clarity in several literatures (Rubin, 1972). A brief note on its principle, advantage, and limitations are discussed here. 

The principle lies in minimizing the sum of squared deviations between the observed response and the functional response 

produced by the model. The process of minimization decreases the initial large system of equations formed by observed 

data (which are overdetermined by default) to a balanced system consisting of n equations with n unknowns. Then the new 

set of equations are simultaneously solved to obtain the numerical value of the parameter. The base station (the one with 

missing values) is given by Y and X denotes the station used for filling. The equation is given by 

 𝑌 =  𝑏 ∗ 𝑋 +  𝑎 (4) 

where b is the regression coefficient and a is the intercept value. 

The major disadvantage of least square is the linear shape that it assumes over long ranges leading to weak extrapolation 

ability where the difference between the observed responses and predicted response is appreciably large. It is also highly 

insensitive to outliers. Few outliers can sometimes skew the results of the analysis in a specific direction, which would make 

the model validation incapable of obtaining a correct output. 

3.5 NON -PARAMETRIC RANKED REGRESSION (NPRR) 

Two-time series belonging to rainfall stations X (the predictor stations which is used as the dependent variable) and Y 

(response station which contains the missing data) stations are considered. X and Y are ordered and ranked in ascending 

order. Sequential ranks were given to unique values. Ranked X RO(X) as a predictor and ranked Y RO(Y) as a response is 

modelled by least square linear regression method. 

 

 𝑅𝑂(𝑌)  =  𝑏 ∗ 𝑅𝑂(𝑋)  +  𝑎 (5) 

 

where b is the regression coefficient and a is the intercept value. 

Estimated rank RE(YI) is back transformed for finding the functional response by implementing the following criterion. Let 

RO(Xi) gives an estimated value of RE(YI) by the equation Eq.2. From the new rank, the value of Y is obtained by the following 

criterion.  

 

 If 𝑅𝐸(𝑌𝑖)  =  𝑅𝑂(𝑌𝑎) 
then Yi = Ya 

(6) 

 

  
If 𝑅𝑂(𝑌𝑎) <  𝑅𝐸(𝑌𝑖) < 𝑅𝑂(𝑌𝑏) 

then YI = YA +  [
𝑅𝐸(𝑌𝑖)−𝑅𝑂𝐸(𝑌𝑎) 

𝑅𝑂(𝑌𝑎)−𝑅𝑂(𝑌𝑏) 
] *(Yb – Ya) 

(7) 

 

 



 If 𝑅𝐸(𝑌𝑖) > 𝑀𝑎𝑥(𝑅𝑂(𝑌)) 
then 𝑅𝐸(𝑌𝑖) =  𝑀𝑎𝑥( 𝑅𝑂(𝑌)) 

(8) 

 

 
If 𝑅𝐸(𝑌𝑖) < 𝑀𝑖𝑛 𝑅𝑂(𝑌)) 

then 𝑅𝐸(𝑌𝑖) =  𝑀𝑖𝑛 𝑅𝑂(𝑌)) 
(9) 

 

where Ya and Yb are observed values and Ya < Yb. By ranking the original data, it gets converted into an ordinal form(Iman 

and Conover, 1979). The main advantage of inducing ordinality is to ease the collation and categorization of rainfall values. 

By ranking the data, its inherent behaviour is removed by making it distribution free, which helps in inferring more 

information from the dataset. The basic assumption of all regression models is that the residuals are normally distributed. 

It's highly likely to have residuals to be normal if both the dependent variable and response variables are normally 

distributed. Generally, all the datasets are not normally distributed. In such cases, non-parametric methods are more reliable 

than the parametric counterpart(Iman and Conover, 1979). 

3.6   NON-PARAMERIC SIMPLIFIED THEIL’S METHOD (NPSTM) 

Theil (1950) developed a method which does not need the assumption of normality of residuals for the validity of the 

significant test and at the same time will not be highly affected by the presence of outliers in comparison to parametric least 

square regression(Theil, 1950). The estimate of the slope is robust in nature and is computed by comparing each pair of data 

in a pairwise style. A total of n pairs (X, Y) will result in n*(n-1)/2 pairwise comparisons. For each of these comparisons, a 

slope ∆Y/∆X is computed. Non-parametric slope estimate is equal to the median of all possible pairwise slope. Since this 

method is computationally intensive, a simplified approach also exists.  

In the simplified method, both predictor and response variables are sorted in ascending order of the predictor variable. Then 

data is split into two halves. If N (number of observations) is odd, one observation, the median value of X is left out. Then 

a new variable having N/2 differences are calculated for both the variables, X and Y according to following relationships: 

 

 𝑋 𝐼 = 𝑋𝐼+(𝑁/2) − 𝑋𝐼  (10) 

 

 𝑌 𝐼 = 𝑌𝐼+(𝑁/2) − 𝑌𝐼  (11) 

 

The regression line is given by Y = b̄*X + ā 

Where b̄ is called the angular coefficient and ā is the intercept  

 
𝑏 =

𝑌 𝑚𝑒𝑑𝑖𝑎𝑛

𝑋̅ 𝑚𝑒𝑑𝑖𝑎𝑛
  (12) 

 

 a =  𝑌 𝑚𝑒𝑑𝑖𝑎𝑛 − 𝑏̅ ∗ 𝑋 𝑚𝑒𝑑𝑖𝑎𝑛  (13) 

 

This way, a regression line is obtained passing through the crossing point of the median (instead of the mean), which is 

considered as the nonparametric centre of the cloud of points (Theil, 1950). The fitted line goes through the median point 

(Xmedian , Ymedian) which is similar to the mean point (Xmean, Ymean) in the least square regression. This way Theil's regressive 

line passes through the crossing point of medians which is then taken to be the centre of cloud formed by the non-parametric 

points.  

3.7 ORTHOGONAL REGRESSION (OR) 

One of six main assumptions of least square fit are that each value of the predictor variable is known exactly. All the 

uncertainty and errors is in response variables. However, this is not true in the case of the variables obtained by 

measurements, where they are inherently exposed to several errors. 



It is the type of regression which is used in case of non-negligible uncertainty in both the response and predictor variable. 

Since X and Y being the point rainfall data, will have some appreciable amount of uncertainty in them(Poller et al., 1998). 

This model minimizes the squared perpendicular distances between the observed response and functional response. It takes 

the normal distance instead of vertical distance that is used in the least square method. 

 The regression line is given by Y = b̄*X + ā. The slope is found by  

 

𝑏 =  −𝐿 + 
√𝐿2 +  𝑅2

𝑅
 (14) 

 

 
where  𝐿 = 0.5 ∗ ⌈

𝑆𝑋

𝑆𝑌
− 

𝑆𝑌

𝑆𝑋
⌉ (15) 

 

 
where  a =  𝑌 𝑚𝑒𝑎𝑛 − 𝑏̅ ∗ 𝑋 𝑚𝑒𝑎𝑛 (16) 

 

3.8 GEOMETRIC MEAN FUNCTIONAL REGRESSION (GMFR) 

 

It is used in situations where measurement error is present in both response and predictor. The benefit is that it forms an 

exclusive regressive model where predictor and the response variable can exchange places and still the model is valid.  

 

 
𝑋𝐼 =  𝑋𝑚𝑒𝑎𝑛 + 𝑟

𝑠𝑌
𝑠𝑋̅
 ⌈𝑌𝐼 −  𝑌𝑚𝑒𝑎𝑛 ⌉ (17) 

 

 𝑌𝐼 =  𝑌𝑚𝑒𝑎𝑛 + 𝑟
𝑆𝑋

𝑆𝑌
 ⌈𝑋𝐼 −  𝑋𝑚𝑒𝑎𝑛 ⌉  (18) 

 

The slope of the first line is m (𝑟 ∗ ⌈
𝑆𝑌

𝑆𝑋
⌉) and the slope of the second line is m̅ (𝑟 ∗ ⌈

𝑆𝑋

𝑆𝑌
⌉) .  The slope of the geometric mean 

functional line M̅ equals the geometric mean of the Y on X and X on Y linear least square fit slopes.  

 

 M̅ = (m * m̅)0.5 (19) 

 

  𝑌𝐼 =  𝑌𝑚𝑒𝑎𝑛 + 𝑠𝑖𝑔𝑛(𝑟) ∗
𝑆𝑋

𝑆𝑌
 ⌈𝑋𝐼 −  𝑋𝑚𝑒𝑎𝑛 ⌉ 

 
(20) 

The principle lies in minimizing the area of the right-angle triangle formed by horizontal and vertical distances between the 

observed data points and functional data points obtained from the model (Halfon, 1985). 

  
STRENGTH OF ASSOCIATION 
 
To find stations with similar statistics around the base (station with missing data) stations, three correlation statistic was 
chosen (Myers 2003). uniqueness, strengths, and limitations of these indices are discussed.  
 

3.9 Pearson product-moment correlation coefficient (r) 

 

The most repetitively used statistic in literature to calculate the strength of linear relationship between two variables. It is a 

bivariate correlation statistic to measure the degree of the relationship between linearly related variables. It quantifies the 

amount of distance by which points lie away from a best linear fit. In case of Pearson, both predicted and response variables 

are considered to be normally distributed, linear and homoscedastic.  

 

3.10 Spearman's rho (rank correlation coefficient, 𝒓𝒔) 

 

Spearman’s rho determines whether there exists any monotonic relation between the variable. It penalizes the dislocation 



by the square of the distance. It has better capabilities to detect monotonic non-linear relationships when compared to 

Pearson product moment correlation.  Similar to non-parametric ranked regression, ordinality is induced to remove the 

inherent distribution (Myers 2003).  

 
3.11 Kendall's tau-b coefficient (𝝉𝑩) 

Kendall's tau-b penalizes dislocations by the distance of the dislocation. Therefore, Kendall's tau-b penalizes two 

independent swaps the same as two sequential swaps, but Spearman's rho gives a stronger penalty to the latter than to the 

former. 
 
4. STUDY AREA AND DATA  

Ten rain-gauge stations from the districts of Palakkad, Malappuram, and Thrissur of Kerala state in India, were chosen as 
shown in Figure 1. for the study. The type of data is monthly precipitation data and length of data ranges from 1991 to 2011. 
The number of available and missing data values is listed in Table 1. 

 

 

Figure 1. Position of rain gauge statins in the study area comprising of three districts of Kerala 

 

5. METHODOLOGY 

 

The process is comprising of two consecutive stages. First one is locating the station with missing data and determination 
of station with similar meteorological characteristics from its neighbourhood. The selection is based on strength of 
association. Using the three indices described earlier, for a station minimum of three station needs to be present for filling. 
The second stage, eight univariate methods are applied to estimate the missing data. The methodology is explained using 
Perinthalamanna as a base station and Manjeri, Mannarkad, Angadipuram, Pattamabi Agro and Ottapalam (Table 2). In an 
earlier study, the maximum distance between stations to be selected a probable candidate for ‘twin station’ is specified as10 
km (Hubbard, 1994). However, due to unavailability of stations within 10 km, the neighbourhood distance is increased to 
25 km and used as the threshold. 

 

 



 

Table 1. Amount of missing data in chosen 10 stations falling within study area 
  

Number  Station name 

Available 

values 

Missing 

values  

1 Manjeri  246 6 

2 Mannarkkad 250 2 

3 Angadipuram  245 7 

4 
Perinthalamanna  

250 2 

5 Pattambi Agro 248 4 

6 Ponnani  248 3 

7 Ottapalam  250 2 

8 Chittur  250 2 

9 Thrissur  250 2 

10 Chalakudi 249 3 

6. RESULT 

 

Selection of best fit regressive model is done using mean, standard deviation, median and Inter-quartile range as criterion 

parameters. Five- number summary is adopted to calculate the amount of spread since each parameter describes a specific portion 

of the time series. Median gives the centre of data series; the upper and lower quartiles span the middle half of a data set, and the 

maximum and minimum values act as a supplementary information describing the dispersion of the data.  Boxplot diagrams were 

used for visual inspection for choosing the appropriate technique. CCWM gave the least error in comparison with IDWM 

and IEWM, which proves that the conceptual improvements were rightly chosen (Table 3).  

 

Table 2. Amount of association measured by three   Table 3. Comparison of descriptive statistics of 

similarity indices       distribution of three different weighting models 

 

 

 

 

 

Variable IDWM IEWM CCWM 

Mean 9.66 8.3 -1.369 

Standard 

deviation 38.29 41.24 7.123 

Median 0.81 0.35 0 

IQR 26.17 26.37 5.472 

Mode 0 0 0 

Maximum 295.43 338.2 42.768 

Minimum -99.46 -110.6 -32.222 

Skewness 1.9 2.16 0.09 

Kurtosis 12.95 16.85 9.46 

Gauging  

station  

Person 

product-

moment 

coefficient (r) 

 

Spearman's 

rho (𝒓𝒔) 

Kendall 

tau-b 

(𝝉𝑩) 

Manjeri  0.959 0.961 0.846 

Mannarkkad 0.903 0.934 0.784 

Angadipuram  0.988 0.986 0.92 

Pattambi Agro 0.957 0.96 0.841 

Ottapalam  0.964 0.957 0.834 



 

Table 4. Descriptive statistics of error distribution of different regressive models 

 

Station name Statistic POSLR NPRR NPSTM OR GMFR 

Angadipuram Mean -0.01 6.84 16.27 -8.04 -8.028 

 Standard deviation 40.92 49.42 41.13 2.154 2.189 

 Minimum -111.78 -118.85 -92.36 -10.01 -10.03 

 Median -9.18 -0.01 5.46 -8.589 -8.586 

 Maximum 327.01 327.19 340.84 0.822 0.978 

 IQR 29.13 28.57 31.86 3.065 3.115 

 Skewness 2.36 2.39 2.39 1.34 1.34 

 Kurtosis 16.88 11.69 15.89 1.86 1.86 

Mannarkkad Mean -0.01 17.56 19.93 -0.03 -0.01 

 Standard deviation 115.26 118.09 115.53 118.16 118.15 

 Minimum -438.69 -309.4 -440.25 -510.02 -509.82 

 Median -25.52 -2.54 -0.03 -3.65 -3.69 

 Maximum 543.26 555.59 562.37 540.48 540.51 

 IQR 76.83 73.91 71.24 69.71 69.58 

 Skewness 1.16 1.63 0.95 0.41 0.42 

 Kurtosis 6.29 5.36 6.37 6.36 6.36 

Ottapalam Mean 0 42.88 25.72 -35.77 -35.85 

 Standard deviation 70.95 82.45 71.5 28.71 28.66 

 Minimum -247.93 0 -213.93 -154.47 -154.32 

 Median -14.73 22.54 10.35 -28.24 -28.33 

 Maximum 315.53 635.04 339.8 -9.59 -9.72 

 IQR 60.85 44.4 62.63 40.76 40.69 

 Skewness 0.35 4.2 0.58 -1.34 -1.34 

 Kurtosis 3.38 20.75 2.88 1.87 1.87 

Pattambi Agro Mean 0 66.7 20.34 -20.587 -20.599 

 Standard deviation 78.06 179.4 78.75 1.345 1.399 

 Minimum -219.34 -204.9 -217.75 -26.13 -26.364 

 Median -22.1 -2.1 1.5 -20.231 -20.229 

 Maximum 477.09 1002.8 487.89 -19.36 -19.323 

 IQR 70.92 119.5 67.23 1.934 2.011 

 Skewness 1.68 2.4 1.43 -1.33 -1.33 

 Kurtosis 7.07 6.92 6.52 1.85 1.85 

Manjeri Mean 0 -5.55 2.67 -0.06 0.04 

 Standard deviation 76.03 69.64 80.54 76.83 76.83 

 Minimum -307.98 -396.84 -365.98 -333.22 -333.06 

 Median -19.08 4.86 -0.01 -13.96 -13.89 

 Maximum 400.54 294.02 408.98 402.88 402.97 

 IQR 66.85 53.37 64.67 63.85 63.85 

 Skewness 0.81 -0.62 -0.17 0.41 0.42 

 Kurtosis 5.02 6.01 5.55 5.28 5.28 

 

Few methods though had a zero-median value were not rejected since they have very large inter-quartile range, which was 

recognized from boxplots (Figure.2b to Figure. 2f). Orthogonal and geometric mean regression techniques produced similar 

results for all the five stations considered. For Mannarkkad and Ottapalam, non-parametric Theil’s method gives exceptional 

low median compared to other methods.  Ranked regression outperforms other methods in all four descriptive parameters 

in Manjeri station For Angadipuram and Pattamabi Agro station, filling by both orthogonal and geometrical models is most 

appropriate as these have the least IQR and standard deviation (Table 4). 

  



  

  

 

 
Figure. 2 (a). Box plot representing the relative distribution of absolute errors by different weighting methods. (b) Box 

plot representing the relative distribution of errors using Angadipuram station. (c) Box plot representing the relative 

distribution of absolute errors using Mannarkard station. (d) Box plot representing the relative distribution of absolute 

errors using Ottapalam station. (e) Box plot representing the relative distribution of absolute errors using Pattambi Agro 

station. (f) Box plot representing the relative distribution of absolute errors using Manjeri station



7. CONCLUSION 

This study provides a unique example of comparing techniques for filling missing precipitation records belonging to two 

different schemes. The reason for the similarity in the results of orthogonal and geometrical mean functional regression 

needs to be further investigated. It's noteworthy to conclude that no method is found to be inferior or superior to other. 

Therefore, it is not advisable to rely on one single technique to fill the missing data. The distribution of the data plays a 

major role in the selection of specific technique to get better results. Therefore, before application of any of these techniques 

discussed, a thorough investigation on the distribution of the data is necessary.  
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