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ABSTRACT: Thermal remote sensing can be very helpful for landfill monitoring since biogas generation leads to an 

increase in temperature during the aerobic and anaerobic digestion processes. The objective of this study is to derive 

the land surface temperature (LS) of Naameh Landfill – located in Lebanon – and its surroundings in different seasons 

using Landsat 8 (L8) acquisitions. As such, two L8 images were acquired to analyze the characteristics of this landfill. 

The images were corrected using four algorithms of which three are split window algorithms and one is single 

channel technique. The study found that the LS variation between the landfill and its surroundings can be successfully 

obtained through different correction methods presented in this paper. However, LS was found to be changing for the 

same class when applying the different algorithms where the inconsistency ranged from 0.4 ºK to 4 ºK. ANOVA tests 

showed statistically significant difference in means of all methods. As for the variation in LS between the landfill and 

different classes, it was found to be consistent for three techniques. This difference was lowest between the landfill 

and bare soils (maximum of 3 oK in summer). On the other hand, the maximum difference from the Ls of the landfill 

was with the sea in summer (~12.5 ± 1.5oK). However, Ls of the landfill did not vary greatly from its surroundings 

during winter, and thus necessitating the use of TRS during summer when monitoring Landfills due to their 

significant microbial activity at higher temperatures. Finally, the impact of ϵ on LS derivation using each method was 

assessed.  

 

1. INTRODUCTION 

 

Satellite thermal remote sensing (TRS) is becoming increasingly popular during the last three decades since it allows 

the retrieval of the land surface temperature (LS). The latter is one of the most essential physical parameters of surface 

energy since it is used in environmental monitoring (Su, 2002; Voogt & Oke, 2003) like the monitoring of landfills by 

analyzing soil, water, and produced landfill gas (Spokas et al., 2006; Faisal et al., 2012). When only in-situ 

monitoring is used, it requires tremendous efforts and cost since landfills have a large spatial footprint. Thus, cheap, 

quick, and non-destructive methods of monitoring are becoming popular. TRS is one of those approaches because 

landfills have significantly higher LS when compared to their surroundings. Due to anaerobic biological degradation 

of organic waste inside the landfill, biogas which contains methane (~ 60%) is generated and has the ability to absorb 

the sun’s heat and to increase the landfill’s LS (Spokas et al., 2006; Faisal et al., 2012). This makes landfills a 

significant source of energy. However, methane is also a highly potent greenhouse gas (25 times that of CO2 (IPCC, 

2007)). As such, monitoring methane generation is a must, and since it is linked to LS, great potential exists with the 

use of TRS. However, in order to obtain LS, TRS images should undergo corrections to account for the effects of the 

atmosphere and emissivity (ϵ), where ignoring such adjustments would lead to an error ranging from 1 to 5 oK (Dash 

et al., 2002; Prata et al., 1995; Jiménez-Muñoz et al., 2014). Also, the error due to improper ϵ estimation for different 

land covers is not well investigated and what is simply known is that the error in LS increases as ϵ decreases (Sharma 

et al., 2017). 

 

In 2013, Landsat 8 (L8) satellite was launched and includes Operational Land Imager (OLI) multispectral sensor of 

nine channels and Thermal Infrared sensor (TIRS) of two bands (Roy et al., 2014) that acquires images with a spatial 

resolution of 100 m (Du et.al, 2015). The presence of two thermal bands allows the application of simple and robust 

atmospheric correction methods like split-window algorithms (SWAs) (Jiménez-Muñoz et al., 2014; Rozenstein et 

al., 2014; Du et al., 2015; Yu et al., 2014) that benefit from differential absorption between the spectrally discrete 

bands (Band 10: 10.60 – 11.19 μm; Band 11: 11.50 – 12.51 μm) in order to account for (1) water-vapor absorption (ɯ) 

in the atmosphere and (2) the proportionality between the atmospheric absorption of the radiant signal and the 

radiance difference of the two thermal bands, where each band is attenuated differently by the atmosphere 

(Jiménez-Muñoz & Sobrino, 2003; Yu et al., 2014). However, single channel algorithms (SC) for atmospheric 

correction are more accurate (Dash et al., 2002) but time consuming and require atmospheric data which can be 

unavailable (Jiménez-Muñoz et al., 2014). For every algorithm, be it for SWA or SC, adjustment for ϵ varies and 

requires careful consideration (Jiménez-Muñoz et al., 2014; Rozenstein et al., 2014; Du et al., 2015; Yu et al., 2014; 

Sharma et al., 2017). This study investigates the variation of LS retrieved from L8 when applying several atmospheric 
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correction methods, namely one SC and three SWA developed for TIRS, and while considering ϵ. Moreover, the 

study investigates LS variation between the landfill and its surroundings during the wet and cold winter and the dry 

and hot summer seasons. 

 

2. STUDY AREA 

 

Naameh landfill (Fig. 1), located in Chouf district – Lebanon, is considered to be the most important sanitary disposal 

site in Lebanon since it was receiving waste from greater Beirut area and Mount Lebanon, equivalent to 58% of the 

total national waste generation (Massoud et al., 2010). It has significantly vegetated surroundings with mostly 

evergreen species (Arif & Doumani, 2014).  

 

 
Figure 1: Naameh landfill (delineated in red) and its surrounding, image taken from Google Earth on July 

2017 

 

Naameh landfill started in 1997 and was planned to serve for six years. Yet, it received waste for 18 years (till summer 

2015). Its last reported area in 2014 was about 350,000 m2 (Arif & Doumani, 2014; Zakhem et al., 2016). Residents of 

Naameh town and its surroundings have been protesting since 2000 that it is loaded far beyond ability and can be a 

source of health and environmental risks (MOE/UNDP/ECODIT, 2011). By 2014, the waste dumped in this landfill 

reached 12 million tons which is larger than the design capacity by four folds (Arif & Doumani, 2014). After closure, 

a waste crisis occurred in Lebanon and forced the government to reopen the landfill for a short emergency period. 

Regarding the biogas emitted from the anaerobic degradation in the subsurface, it was being flared during the entire 

period of the landfill’s operation. Lately, however, the biogas was used to supply the locals in Naameh with 

electricity. The landfill would generate biogas several years after closure and thus be able to yield a significant 

amount of energy. 

 

3. MATERIALS & METHODS 

 

3.1 Overview 

 

The workflow described in the following sections is shown in Fig. 2. 

 

3.2 Data acquisition, preprocessing, and classification 

 

Two L8 images were acquired from the United States Geological Survey (USGS) for winter and summer (Table 1). 

Following the workflow diagram, the OLI images were classified after determining reflectance values and applying 

dark object subtraction (DOS) to correct for the atmospheric effects successively (Dash et al., 2002). Support vector 

machine (SVM) supervised classification was done using the ENVI-IDLTM environment using training data acquired 

from Google Earth and site visits. Six classes resulted, namely Landfill, Bare Soil, Mixed (Vegetation & Soil), Heavy 

Vegetation, Urban areas, and Sea (Fig. 3). Data from the TIRS was also corrected to transform the digital numbers to 

at-sensor temperature (Tsen) (Fig. 4) by reversing the Planck’s function (Dash et.al, 2002). 



 

 

 

 

Table 1: L8 Images Characteristics used in this study 

Season 
Acquisition Date 

(Month/Day/Year) 

Time 

(UTC) 

Path/ 

Row 
Satellite 

Ambient  

Temperature 

(oK) 

Winter 02/13/14 8:09 AM 174/37 L8 291.5 

Summer 06/08/15 8:10 AM 174/37 L8 300.0 

 

 
Figure 2: Workflow Diagram 

 

Figure 3: Classification of the study area using SVM (based on the summer image) 

 

Figure 4: Tsen maps determined from L8 TIRS acquisitions of (a) summer and (b) winter 



 

 

 

 

3.3   Estimating Emissivity 

 

The normalized difference vegetation index (NDVI) was determined for the images. ϵ for each pixel was determined 

using EQ. 1 developed by Van de Griend & Owe (1993). Fig. 5 shows ϵ in summer and provides the average ϵ per 

class. However, it should be noted that EQ. 1 is not valid when having a negative NDVI such as the case of water 

(NDVI ~ -0.4). Thus, water ϵ was considered constant for all pixels (= 0.989) (Valor & Caselles, 1996). The ϵ 

variation between the two images was also very low (maximum of 0.5%) which is due to the fact that the NDVI 

variation between images was minimal. Furthermore, ϵ is considered constant for both L8 TIR bands even though it is 

wavelength dependent since the variation in the 8 to 14 μm range is minimal (Hori et al, 2006 & Jensen, 2009). 

 

 ϵ = 1.0094 + 0.047ln(NDVI)                                                                                                                                          (1) 

 

 
Figure 5: ϵ map for the study area 

3.4 Deriving LS from Tsen 

 

For deriving the LS from Tsen, three SWA and one SC algorithms specific to L8 were used. The first SWA adopted in 

this study is presented in EQ. 2 and was derived by Du et al. (2015). It includes the addition of the last quadratic term 

(difference between adjacent Tsen) which was derived after 946 atmospheric conditions retrieved from 

Thermodynamic Initial Guess Retrieval (http://ara.abct.lmd.polytechnique.fr) and 53 ϵ spectra from ASTER 

database. The algorithm coefficients are also specific to L8 TIRS and depend on different ranges of ɯ. 

 

Ls = bo + (b1 + b2 (1- ϵ) / ϵ+b3 Δϵ/ϵ2) * 0.5 (T10+T11) + (b4+b5 (1- ϵ)/ϵ+b6 Δϵ/ϵ2)*0.5(T10 – T11) +b7 (T10 – T11) 2           (2) 

 

where [b0, b1…,b7] = [11.00824, 0.95995, 0.17343,-0.28852, 7.41192, 0.42684, -6.62925, -0.06381] for a ɯ ranging 

between 2 and 3.5 g/cm2 and  [b0, b1…,b7] = [-2.78009, , 1.01408, 0.15833, -0.34911, 4.04487, 3.55414, -8.88394, 

0.09152] for a ɯ ranging between 0 and 2.5 g/cm2. T10 and T11 are the Tsen for bands 10 and 11, respectively.  

 

The second SWA, presented in EQ. 3 was developed by Yu et al. (2014) by adopting the same mathematical 

derivation suggested by Quin et al. (2001). For EQ. 3, transmissivity (Ʈ) is estimated by quadratic regression analysis 

versus ɯ. This algorithm also requires the estimation of ɯ and ϵ.  

 

Ls = T10 + c1*(T10 – T11) + c0                                                                                                                                           (3) 

 

where co and c1 are linear regression coefficients in function of Ʈ and ϵ. 

 

The third SWA was developed by Rozenstein et al. (2014) and is presented in EQ. 4 derived through algebraic 

manipulation of the radiative transfer equation and linearization of the Planck’s radiance equation. The algorithm 

requires the estimation of ϵ and Ʈ. 

 

Ls = ao + a1T10 - a2T11                                                                                                                                                           (4) 

 

where ao, a1, and a2 are linear regression coefficients in function of Ʈ and ϵ.  

 

The fourth and final algorithm adopted in this study is presented in EQ. 5 and was developed by Jimenez-Muñoz et al. 

(2014). EQ. 5 is a SC algorithm derived by the inversion of the radiative transfer equation (Jiménez‐Muñoz & 

Sobrino, 2003). The algorithm requires the estimation of ϵ, Ƭ, upwelling radiance (Lu), and downwelling radiance 

(Ld). 
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Ls = Ɣ * [1/ε (d1*Lsen + d2) + d3] + δ                                                                                   (5) 

 

where Lsen is the at sensor spectral radiance in W.m−2.sr−1.μm−1 calculated from the two TIRS images; Ɣ and δ are 

parameters represented by Ɣ = Tsen / bƔ.Lsen,Ɣ = Tsen – Tsen
2 / bƔ, and bƔ = c2/λ=1324 for TIRS band 10; d1, d2, and d3 

are atmospheric functions where d1 = 1/Ʈ, d2 = Ld – Lu/ Ʈ, and d3 = Ld. However, if Ʈ, Ld, and Lu are not available, 

Jiménez‐Muñoz et al. (2014) provides an approximation of d1, d2, and d3 by plotting them against ɯ from a second 

order polynomial fit. In this study, Ʈ, Ld, and Lu were determined by the software developed by Barsi et al. (2003). 

 

4. RESULTS & DISCUSSION 

 

4.1 Variation of retrieved LS with Different Atmospheric correction algorithms 

 

LS maps for each class and for both summer and winter images are provided in Fig. 6 and 7, respectively. The 

difference between Tsen and Ls ranges from 1 to 8oK for all the correction methods and hence is higher than what has 

been recorded in literature (1 to 5 oK). The one-way analysis of variance (ANOVA) (Tamhane, 1977) test is used to 

compare the means of the obtained Ls images and to determine whether at least two means of two groups are 

statistically different, meaning it tells us if there is an overall difference of means. To investigate specifically which of 

the means are different from each other, a post-hoc test should be conducted. Due to its great presence in the images, 

the sea water was masked out of both scenes, and all ANOVA analysis was carried out with the land pixels. 

 

For the ANOVA test, one should check the following assumptions for the groups (Clarke, 2008): (1) each should 

follow a normal distribution; (2) they should have homogenous variances. Table 2 summarizes statistical 

characteristics of each of the Ls maps obtained by EQ. 2, EQ. 3, EQ. 4, and EQ. 5. Normality is considered a valid 

assumption based on histogram plots of summer data show in Fig. 8. However, for the winter data (Fig. 8), normality 

is attained only when the logarithm is applied and therefore the data follows a log-normal distribution. For variance 

homogeneity assessment, a box and whisker plot is in Fig. 9 to visualize the spread, skewness, and outliers in the data. 

Since all the boxes are of roughly the same height, then this shows that the groups have approximately equal variance.  

 

 

Figure 6: LS maps for the summer image when applying (a) EQ. 2, (b) EQ. 3, (c) EQ. 4, and (d) EQ. 5 

 

Figure 7: LS maps for the winter image when applying (a) EQ. 2, (b) EQ. 3, (c) EQ. 4, and (d) EQ. 5 



 

 

 

 

 

ANOVA is applied on the four different LS achieved by the four methods as a whole, per season. It resulted that there 

was a statistically significant difference between their means as determined by one-way ANOVA [F (df) = F ratio, p] 

= [F (3) = 24937, p-value < 210-16]; where F is the F statistic, df is the degrees of freedom and p is the p-value. Since 

the p-value is very small and less than the assumed alpha value of 0.05, then the one-way ANOVA null hypothesis is 

wrong and there is an overall statistically significant difference in means. ANOVA residual plots show the normality 

of residuals, and thus assert the validity of ANOVA for this dataset (Fig. 10). To determine how the pair means are 

statistically different from each other, the post hoc “Tukey Honest Significant Differences” multiple comparison test 

is used. The test does a pair-wise comparison of the means of LS and reports the p-value shown Table 3. The four 

different LS maps are compared to each other in Fig. 11 and since in each case the p-value is less than the alpha 

confidence value of 0.05, then a significant statistical difference is seen in the group’s means. It can be noted that the 

most similar results were obtained for EQ. 2 and EQ. 3 (b-a), yet the highest difference in the results is between EQ. 

4 and EQ. 5 (c-d). The single channel algorithm (EQ. 5) seems to be mostly consistent with EQ. 3 (b-d).  
 

Table 2: Description of summer and winter data groups 

 
 

 
Figure 8: Histogram plot of Frequency vs. Temperature when applying (a) EQ. 2, (b) EQ. 3, (c) EQ. 4, and (d) 

EQ. 5 for both summer and winter maps (excluding sea water) 

 

 
Figure 9: Box and Whisker plots for the four different groups for the summer and winter data (excluding sea 

water) 



 

 

 

 

 

Figure 10: ANOVA residual plots for both summer and log-transformed winter (excluding sea water) data 

respectively on the left and right  

 
Table 3: Tukey multiple comparisons of means with 95% family-wise confidence level 

  

 
Figure 11: Tukey Multiple Comparison Test. All groups’ means are compared to each other and the difference is reported 

on the x-axis, the further the plot is from the zero dotted vertical lines the higher is the statistically significant difference, a 

is EQ. 2, b is EQ. 3, c is EQ. 4, and d is EQ. 5 (data excludes sea water) 

 

4.2 Variation of the LS between the landfill and the surrounding 

 

Fig. 12 displays the LS difference between the landfill and the surroundings for both images for each of the four 

atmospheric correction methods. The difference is relatively high, especially during summer, which confirms the 

ability of this thermal data in capturing the activeness of the landfill at higher temperature. For both winter and 

summer images, the smallest difference is encountered when applying EQ. 4 while EQ. 2, 3 and 5 give higher 

differences and are consistent with each other. In addition, the difference in Ls between the landfill and the vegetation 

is about 2 to 7 oK during the summer and hence is consistent with the literature (Faisal et al., 2012). On the whole, the 

variation in LS between different classes was found, during summer, to be minimal (~1.7 ± 0.3 oK) between the 

landfill and bare soils and maximum (~12.5 ± 1.5oK) between landfill and the sea temperature. 



 

 

 

 

 

Figure 12: LS difference between the landfill and the other classes for the (a) summer image, and (b) winter 

image 

 

4.3 Effect of the ϵ on the difference between Tsen and LS (T) 

 

ϵ has a great impact on determining LS from TIR images, and it can be noticed that in each of the correction equations, 

it plays a role. However, different atmospheric correction algorithms might impact LS results depending on how ϵ is 

accounted for. Fig. 13 provides Tsen - Ls (T) when accounting for ϵ for the different atmospheric correction 

algorithms for both summer and winter images. As shown in Fig. 13, T varies from 0.2 to 6 ºK for an ϵ ranging from 

0.913 to 0.989 for both images when applying EQ. 2, 3 and 5. However, for EQ. 4, which represent the algorithm 

developed by Rozenstein et al. (2014), the difference is much smaller (0.03 to 1.5 ºK) which highlights the reason 

why the LS obtained from this correction algorithm is much smaller than the other correction procedures and hence 

needs to be investigated further. Since EQ. 2, 3 and 5 - when considering ϵ - are yielding consistent results, a linear 

correlation can be derived between T and ϵ, as shown in Fig.  14(b), with an R2= 0.9925.  

 

 

Figure 13: Average T in oK for with correction methods w.r.t. ϵ for (a) summer and (b) winter 

 

Figure 14: (a) T in oK between the Tsen and LS with respect to ϵ for EQ. 2, 3 and 5; (b) linear correlation 

between ϵ and T  

 



 

 

 

 

5. CONCLUSION 

 

L8 data was used to obtain thermal information of Naameh Landfill which can be linked to the different anaerobic 

microbiological phases. The study found that LS variation between the landfill and its surroundings can be 

successfully obtained in a consistent manner through two different approaches of SWA (out of three tested) and the 

one SC algorithm presented in this paper. This confirms the success in using these techniques quantify the relative 

difference in temperature per scene.  Yet, the absolute temperature results per methods were inconsistent with 

variation ranging from 0.4 ºK to 4 ºK.  Hence, LS determined from all the algorithms cannot be validated unless 

compared to the actual LS which is the upcoming step in this work. In addition, the variation in LS between different 

classes was found, during summer, to be minimal (~1.7 ± 0.3 oK) between the landfill and bare soils and maximum 

(~12.5 ± 1.5oK) between landfill and the sea temperature. However, minor changes of the LS between the landfill and 

the surrounding was observed during winter, and thus necessitating the use of TRS during summer when monitoring 

Landfills due to their significant microbial activity at higher temperatures. On the whole, this study shows the 

effectiveness of the four different approaches in the retrieval of the relative variation in Ls in the summer and winter. 

Furthermore, a study was conducted to analyze the effect of ϵ variation on the temperature difference between Tsen 

and Ls (T), it was found that a linear correlation exists between the ϵ and the T (for adopting the different 

correction algorithms) with an R2 of 0.9925. Finally, to confirm the statistical significance of the four different 

corrections in summer and winter, the ANOVA test was conducted. Along with the post hoc Tukey test, ANOVA 

resulted that the several adopted approaches indeed show a statistical significant difference among their means in 

general and in pairwise comparison. 
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