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ABSTRACT: Philippines is the second largest producer of Cocos nucifera, also known as coconut, in the world, 

with an average production of 15 billion nuts per year corresponding to a hundred billion pesos. Being one of the 

major crops in the country, coconut accounts for 26% of the total agricultural land, corresponding to at least 3.5 

million hectares. As significant declines in the production have been charted since 2016 due to climate-related 

incidents and infestations, it is high time that we introduce efficient and accurate data as inputs to resources 

management in the country. However, managing these much of coconut resources scattered on large geographic area 

is inefficient if we use data gathered through manual counting, and inaccurate of we resort to rough estimations. As 

the Philippine government embarks on the acquisition of LiDAR data achieving an equivalent 1 meter grid resolution, 

this study seeks to achieve classification of coconut trees at the individual tree crown level by performing Object-

Based Image Analysis (OBIA) on a simple LiDAR-derived first-return highest-elevation model without the aid of 

spectral data. Support Vector Machine classification in a one-against-all approach has been implemented for the 

simplicity of the classification process. The methodology produces highly accurate tree count estimates on selected 

study sites in San Antonio, Quezon, reaching at least 90% on 16 study areas, without incorporating other remotely-

sensed data and without using complex procedures. The outputs of this research suggests that agricultural resources 

mapping at individual tree level achieves high accuracies even when using LiDAR data alone. This study may also 

pioneer on “one agricultural class per classification” approach in the improvement of existing agricultural resources 

maps. 

 

1. INTRODUCTION 

 

In spite of the sufficient efforts rendered, the performance of the Philippine agriculture sector has been charting 

significant declines (Table 1) particularly in the year 2016 due to climate-related incidents, according to the Philippine 

Statistics Authority (PSA). 

 

Table 1. Tabulated figures from PSA’s Performance of Philippine Agriculture in 2016 

Quarter (2016) Agriculture Production Performance Negative Factors 

January – March -4.53 % 
Prolonged Dry Spell 

Typhoons “Lando” and “Nona” 

April – June -2.34% Prolonged Dry Spell 

July – September +2.98% (Unaccounted) 

October – December -1.11% Typhoons “Karen” and “Lawin” 

 

Apparently, the effects of climate change and climate-related disturbances have induced significant variations in the 

agriculture production. As articulated by the Food and Agriculture Organization of the United Nations (FAO), climate 

change, with its vast impacts on agricultural productivity, “threatens” the ability of mankind to accomplish sustainable 

development (2017). Furthermore, it should be accounted for that climate change also induces “changing rainfall 

patterns, drought, flooding and the geographical redistribution of pests and diseases” on a global scale (FAO, Climate 



Change, 2017), as evident in the table above. These scenarios and the ever increasing population call for the 

improvement of resource assessment and management in the Philippines. 

 

The Phil-LiDAR 2 Program, also known as the Nationwide Detailed Resources Assessment using LiDAR, is a three-

year program funded by the Department of Science and Technology (Blanco A. C., Tamondong, Perez, Ang, & 

Paringit, 2015). The program, which started July 2014, aims to use the LiDAR datasets in order to extract various 

natural resources including agricultural, coastal, hydrological, forest and renewable energy. The acquired data 

achieves an equivalent 1 meter grid resolution and have been used to map natural resources in the Philippines. 

This research endeavor, however, has the objective of developing an alternative methodology that focuses on mapping 

coconut resources at individual tree crown level via linear Support Vector Machine classification. Specifically, this 

study aims at extracting individual coconut tree crowns using the available LiDAR data in a selected study area. 

1.1. Coconut Resources 

 

Philippines is the second largest coconut producer in the world (FAO, Restoring coconut farmers' livelihoods in the 

Philippines, 2017), with an average production of 15 billion nuts per year1 and with production values approaching 

hundred billion pesos (PSA, 2016). In spite of these figures, reports from the Major Non-Food and Industrial Crops 

Quarterly Bulletin (2016) of the Philippine Statistics Authority (PSA) showed that climate events, such as drought, 

dry spell and typhoons, have significantly affected the production of the coconut crops in 2016.  

 

Table 2. Declines charted in the production of coconut since 2016 

Quarter Agriculture Production Performance Negative Factors 

2017 Q1 2.3% lower than last year 

Dry Spell 

Drought 

Cocolisap Infestation 

2016 Q4 5.2% lower than last year 

Dry Spell 

Drought 

Rat Infestation 

2016 Q3 7.2% lower than last year 
Dry Spell 

Rat Infestation 

2016 Q2 7.0% lower than last year 
Dry Spell 

Typhoon 

2016 Q1 5.1% lower than last year 

Extreme Heat 

Dry Spell 

Typhoon 

 

Way back in 2013, when typhoon Haiyan struck the Philippines, coconut trees that were “destroyed or damaged” 

reached an estimated 44 million trees. Being one of the major crops in the Philippines, coconut accounts for 26% of 

the total agricultural land, corresponding to at least 3.5 million hectares of coconut areas. Monitoring and managing 

these much of resources scattered on a large geographic area would be inefficient if we conduct manual counting, 

and inaccurate if we resort to rough estimations. 

 

The availability of high resolution remote sensing (RS) data has been found to be an effective solution in dealing with 

such problems that involve geospatial concepts. In fact, the Philippine government utilized the technology known as 

Light Detection and Ranging (LiDAR) in producing three-dimensional maps. Moreover, by expounding on the 

information that can be obtained from LiDAR data, an offshoot program known as Phil-LiDAR 22 has been created, 

tasked to extract natural resources features, including agricultural, coastal, forest, hydrological and renewable energy 

from RS data (Blanco A. , et al., 2016). 

 

Current literature describes that current RS data allow not only the mere extraction of features on earth, but also the 

estimation of important quantities that greatly contribute in resources management. In focusing on the coconut 

industry alone, we can already pinpoint coconut plantations and determine their total crown projection areas using 

landuse/landcover maps produced out of the LiDAR data. However, in order to produce good estimates, the 

classification image must be of the individual tree crown (ITC) level. In practice, the design of the methodology in 

achieving the ITC level ponders on some major considerations, such as the cost of high resolution RS data and the 

complexity of the image processing methods. 

                                                           
1 This is calculated by averaging the nut production from 2011 to 2015. 
2 Phil-LiDAR 2 was created as a different venture while the former DREAM has become Phil-LiDAR 1  



 

1.2. Level of Detail in RS/GIS Products 

 

The level of detail that can be extracted from remote sensing images greatly depends on the resolution of the data. 

The spatial resolution of the data, which describes the real-world dimensions contained inside a pixel, limits the 

dimensions of the objects that can be “seen” in the data. The higher is the resolution, the more capable the system is 

in extracting smaller features. 

 

Aside from the resolution, data fusion increases the accuracy of classification particularly in identifying tree species 

and delineation of individual tree crowns (Gulbe, 2015). This has been supported by the study conducted by Lee, et 

al. in 2016, concluding that the accuracy of tree species mapping can be improved by combining LiDAR and 

hyperspectral imagery. In essence, data fusion refers to the combination of information out of various domains. In 

general, data fusion occurs in any of the following parts of the process: measurement, feature and decision (Gulbe, 

2015). Using single input data alone may not produce the desired output and performance. When Gulbe used LiDAR 

data alone, the results were not acceptable “due to low point density for a complex forest structure” (2015). 

 

Various input layers can also be derived from a single RS data by exploiting on the parameters. The study performed 

by Ferreira, et al. in 2014 used vegetation indices layers extracted from hyperspectral data to improve the individual 

tree crown delineation process. In essence, the quality of the image processing outputs greatly depends on the quality 

of the input datasets. 

 

1.3 Object-Based Image Analysis 

 

Object-based image analysis (OBIA) has been introduced to improve image processing and eliminate the speckles 

that are inherent in the pixel-based process. Instead of involving pixel classification, OBIA works on objects, which 

are outlined regions with homogeneous properties (Yadav, Rizvi, & Kadam, 2015), with segmentation being the heart 

of the process. 

 

Segmentation refers to the method of generating object outlines. It refers to the creation of objects that are an 

aggregation of pixels with similar features. Figure 1 shows delineation of objects applied in an elevation layer. Pixels 

of similar elevation values aggregate together, forming the objects. 

 

 

Figure 1. Image scene containing delineated objects, viewed using eCognition 

 

Kumar, et al. discussed that image segmentation can be categorized depending on the approach, such as thresholding, 

region-based, edge-based, ANN-based, PDE-based and Fuzzy-based (2016). Landcover mapping is fundamental in 

utilizing RS data for natural resources management. While segmentation is the core of the OBIA process, derivation 

of information from RS images relies on “robust classification methods” (Maulik & Chakraborty, 2017). Image 

classification involves “image pre-processing, the detection and extraction of an object, feature extraction, selection 

of training samples, selection of suitable classification techniques, post-classification processing and accuracy 

assessment.” 

 



 

Figure 2. Major steps in image classification (Maulik & Chakraborty, 2017) 

 

Machine learning plays an important role in the context of image classification. In RS application, machine learning 

algorithms eliminate the task of manual selection of land cover classes. Identification of suitable machine learning 

algorithms considers effectiveness and efficiency. 

 

Machine learning can be unsupervised and supervised. Advanced classification procedures use supervised methods 

in which the training sets of examples are used in identifying class boundaries. Common supervised learning methods 

are nearest neighbor, decision tree and Support Vector Machine (SVM) algorithms. 

 

The Support Vector Machine (SVM) classifier is one of the most commonly preferred algorithms in RS applications 

due to its “good classification performance with high-dimensional data” (Baldeck & Asner, 2015) and it is even 

labeled as the top-performing classifier algorithm when dealing with hyperspectral data in recent studies. 

 

While SVM methods were originally tested in the classification of as much classes as possible in an image scene, 

research objectives that deal with one or a few classes are not uncommon. 

 

1.4 Delineation of Tree Crowns 

 

Tree species classification and individual tree information critically relies on how well the individual trees are 

delineated (Wu, et al., 2016). Manual outlining of tree crowns is able to sufficiently achieve desirable results using 

images with high spatial resolutions. This method, though, is “labor intensive and therefore unfeasible over large 

areas” (Ferreira, et al., 2014).  

 

As the segmentation seeks to achieve one crown polygon for each of the trees, failure to do so may lead to either an 

over-segmentation or an under-segmentation. An over-segmentation occurs when a single tree is detected as multiple 

crowns. It may occur when branches and sub-crowns of a single tree resembles other smaller trees (Hu, Li, Jing, & 

Judah, 2014). Under-segmentation, however, happens when adjacent trees are falsely detected as a single tree. Table 

3 summarizes recent researches on individual tree crown delineation. Almost all ITC methodologies found in the 

literature focus on forest sites. The RS data, algorithm used and the respective accuracies have also been tabulated. 

 

Table 3. Individual tree crown delineation related studies and their accuracies 

Study Site RS Data (resolution) Algorithm/Method Accuracy 

Yang, He, & 

Caspersen (2014) 

Deciduous 

forest 

ADS40 Multispectral 

aerial image (0.4 m) 
Watershed algorithm 90% 

Wu, et al. (2016) 

Coniferous 

forest 

Coniferous 

forest 

LiDAR (7.76 pts/m2) 

LiDAR (12.49 pts/m2) 

Localized contour tree 

method 

94.21% 

75.07% 

Zaki, Latif, Zainal, & 

Zainuddin (2015) 

Tropical 

forest 

Worldview-2 satellite 

image (0.5 m) 
Watershed algorithm 82.6% 

Liu, Im, & 

Quackenbush (2015) 

Coniferous 

forest 

Mixed forest 

Deciduous 

forest 

LiDAR (~10 pts/m2) 

 

LiDAR (~7 pts/m2) 

Fishing Net Dragging 

algorithm 

79% 

78% 

74% 

Gulbe (2015) 
Natural 

forest 

Multispectral aerial image 

(0.5 m) 

 

Region growing 

method 

72% 

75% 

Image pre-
processing

Detection of 
objects

Feature 
extraction

Selection of 
training 
samples

Selection of 
suitable 

classification 
techniques

Post-
classification 
processing

Accuracy 
assessment



LiDAR (4 pts/m2) fused 

with multispectral image 

Yang J. , He, 

Caspersen, & Jones 

(2017) 

Uneven-

aged, 

mixed-

broadleaf 

forest 

ADS40 Multispectral 

aerial image (0.4 m) 
Watershed algorithm 

51% 

69% 

Lee, et al. (2016) 
Deciduous 

forest 

LiDAR (6 pts/m2) and 

hyperspectral image (361 

spectral bands, at 1.2 m) 

LiDAR point cloud-

based clustering 

method 

65.8% 

Lindberg, Eysn, 

Hollaus, Johan, & 

Pfeifer (2014) 

Hemi-boreal 

forest 

Full waveform LiDAR (7 

pts/m2) 
Watershed algorithm 71% 

Hu, Li, Jing, & Judah 

(2014) 

Mixed forest 

Deciduous 

forest 

LiDAR (40 pulses/m2) Watershed algorithm 
74% 

72% 

Ferreira, et al. (2014) 

Semi-

deciduous 

species on 

tropical 

forest 

ProSpecTIR-VS 

hyperspectral image (357 

bands) 

Region growing 

algorithm 

55% 

56% 

70% 

 

Although individual tree crown delineation methods have claimed promising results, (Kaartinen, et al., 2012) the 

“criteria for tree detection and extraction can be different” depending on the application, which means that there is 

variability in the methods that can be applied. For instance, the region growing approach has the advantage in that it 

“can make use of all the spectral bands provided by the multispectral images” but the results may contain stick-shape 

segments (Yang, He, & Caspersen, 2014). Currently, researchers are still working on increasing the accuracies of 

ITC methodologies by improving the existing methodologies found in the literature. 

 

2. METHODOLOGY 

 

2.1. Study Area and Materials 

 

Flight mission “Laguna_Blk18VWs_20140425” crosses the municipality of San Antonio in the province of Quezon. 

16 LiDAR tiles are selected for processing, with each tile covering a 1-by-1-km grid. These 16 tiles completely cover 

barangays Niing, Bagong Niing and Poblacion. 

 

The province of Quezon has been selected as it is one of the top producers of coconuts in the Philippines. The 

municipality of San Antonio is picked due to considerations on the variability of features, safety and accessibility. 16 

tiles have been used to fit in the study time frame. 

 

 

Figure 3. Selection of LiDAR data tiles in the study area 



 

2.2. Methodological Workflow 

 

The workflow implemented in the study is shown Figure 4. The overall workflow starts with the selection of the 

LiDAR datasets. Then, the elevation values are rasterized such that every pixel provides height values of features 

relative to the ground. The raster datasets are loaded in the eCognition software in the implementation of Object-

Based Image Analysis. First, a series of segmentation procedures are executed until the individual trees are delineated. 

The field data samples are loaded as a vector file and are used to train the SVM classifier algorithm. The training is 

implemented on only two classes, namely Coconut and Not-Coconut classes.  

 

 

Figure 4. Methodological framewrok implemented for the study 

 

The resulting classified image layers are assessed using another set of sample data sets labeled as validation points. 

These data points are used in the accuracy assessment of the 16 eCognition projects. After ensuring that the accuracies 

of the classification are at tolerable levels, the tree count is implemented. 

 

Statistical analysis is performed among the tree count extracted from the classified layers and the tree count 

information from manual counting. The root mean square error is determined and the p-value interpreted. Visual 

interpretation tests whether the generated vector files are useful thematic map layers. 

 

 

2.3. Elevation raster data generation 

 

The methods in the generation of elevation rasters are crucial in the classification, especially when complex 

procedures and workflows are not necessary in the study. In the extraction of elevation values, Figure 5 shows the 

series of steps used to generate the raster inputs to the segmentation process. As shown, the LAS tiles undergo 

conversion to the EGM08 model for considerations on the calibration of the datasets. Then, extraction of LiDAR first 

returns is implemented to acquire the points that mostly define the surface of canopies. Then, highest elevation is 

chosen since and they are recalculated relative to ground points. Eventually, the values form raster data sets. 

 

 

Figure 5. Workflow used in the creation of LiDAR-derived elevation layer 
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2.4. Image Segmentation 

 

The series of segmentation algorithms applied is shown in Figure 6. The parameters used are chosen with most 

considerations on coconut trees. Multi-threshold algorithm was used to eliminate in the classification process those 

features that have zero elevation. Contrast-split segmentation has been applied for the separation of ground and non-

ground features since there is no particular value that we can just randomly select to separate them from all the other 

classes. 

 

 

Figure 6. Segmentation algorithms executed in delineating objects 

2.5. Sample data sets for training and validation 

 

Figure 7 depicts the distribution of samples in the 16 study sites. Two 100m-by-100m grids are chosen for the 

selection of training data sets for each of the study areas. The training samples consist of two classes, namely Coconut 

and Not Coconut. The features used have been limited to elevation, area in pixels and elliptic fit, for simplicity. 

 

 

Figure 7. Training samples in 100m-by-100m grids 

 

Similarly, the samples for validation are selected from two 100m-by-100m grids but with locations not coinciding 

with the grids of the training samples. 

 

 

Figure 8. Samples for validation (in yellow) 
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3. RESULTS AND DISCUSSION 

 

3.1. Accuracy Assessment of SVM Classification 

 

Using the sample data sets depicted in Figure 8 as validation data, accuracy is performed by creating TTA mask out 

of these samples. The generated accuracy levels are tabulated in Table 4, with producer, user, and overall accuracy 

indices. 

 

Table 4. Overall accuracies of the classified layers for all the 16 study sites 

Study 

Area 
LAS No. Class Producer User Hellden Short 

KIA Per 

Class 

Overall 

Accuracy 
KIA 

1 Pt000222 Coconut 1.0000 0.9427 0.9705 0.9427 1.0000 0.9623 0.9184 

  Not Coconut 0.9008 1.0000 0.9478 0.9008 0.8492   

2 Pt000224 Coconut 0.8790 0.9645 0.9198 0.8515 0.7267 0.9062 0.8075 

  Not Coconut 0.9490 0.8328 0.8871 0.7971 0.9085   

3 Pt000226 Coconut 0.7896 0.8788 0.8318 0.7121 0.6396 0.8521 0.7004 

  Not Coconut 0.9060 0.8330 0.8680 0.7667 0.7742   

4 Pt000227 Coconut 0.8894 0.9874 0.9358 0.8794 0.7647 0.9282 0.8549 

  Not Coconut 0.9837 0.8615 0.9186 0.8494 0.9693   

5 Pt000228 Coconut 0.8739 0.9122 0.8927 0.8061 0.7666 0.8992 0.7976 

  Not Coconut 0.9224 0.8880 0.9049 0.8263 0.8313   

6 Pt000229 Coconut 0.9195 0.8946 0.9069 0.8296 0.8613 0.9229 0.8411 

  Not Coconut 0.9252 0.9434 0.9342 0.8765 0.8218   

7 Pt000264 Coconut 0.8797 1.0000 0.9360 0.8797 0.7324 0.9247 0.8455 

  Not Coconut 1.0000 0.8325 0.9086 0.8325 1.0000   

8 Pt000265 Coconut 0.8828 0.9685 0.9237 0.8581 0.8037 0.9355 0.8681 

  Not Coconut 0.9773 0.9133 0.9442 0.8943 0.9436   

9 Pt000266 Coconut 0.9504 0.8687 0.9077 0.8311 0.8833 0.8985 0.7954 

  Not Coconut 0.8410 0.9387 0.8872 0.7973 0.7234   

10 Pt000267 Coconut 0.8974 0.9571 0.9263 0.8627 0.7867 0.9209 0.8412 

  Not Coconut 0.9501 0.8819 0.9148 0.8429 0.9039   

11 Pt000268 Coconut 0.9202 0.8696 0.8942 0.8086 0.8539 0.9066 0.8107 

  Not Coconut 0.8963 0.9373 0.9164 0.8457 0.7716   

12 Pt000269 Coconut 0.9108 0.9666 0.9378 0.8830 0.7658 0.9207 0.8286 

  Not Coconut 0.9397 0.8462 0.8905 0.8026 0.9026   

13 Pt000270 Coconut 0.9517 0.9694 0.9605 0.9239 0.8877 0.9545 0.9070 

  Not Coconut 0.9585 0.9348 0.9465 0.8985 0.9272   

14 Pt000271 Coconut 0.9078 0.9562 0.9314 0.8716 0.8025 0.9249 0.8485 

  Not Coconut 0.9468 0.8891 0.9170 0.8467 0.9001   

15 Pt000272 Coconut 0.9490 0.9739 0.9613 0.9255 0.8985 0.9609 0.9219 

  Not Coconut 0.9734 0.9481 0.9606 0.9242 0.9465   

16 Pt000286 Coconut 0.9432 0.9836 0.9630 0.9286 0.8857 0.9619 0.9238 

  Not Coconut 0.9826 0.9400 0.9608 0.9246 0.9654   

 

Accuracy levels for all study areas have been satisfactory. The producer accuracies on average are reaching above 

90% for all study areas. Although we are using only two classes as inputs to the SVM classifier, the results suggest 

that the one-against-all approach can achieve at least 90% overall accuracy levels. 

 

Moreover, the producer accuracies are a direct measure of the accuracy of coconut count.  

 

3.2.  Estimated Coconut Tree Count 

 

Estimated and manually counted coconut trees are tabulated in Table 5. Apparently, majority of the count estimates 

are less than the manually generated counts. However, we can still see that the estimates are useful in predicting the 

actual values of the coconut trees in the sampling plots. 

 

Table 5 Tree count accuracy assessment: vector count versus manual count 

Study Area 
Source LAS 

number 
Count 

Manually 

Counted 



1 Pt000222 277 284 

2 Pt000224 342 337 

3 Pt000226 221 211 

4 Pt000227 174 181 

5 Pt000228 141 137 

6 Pt000229 195 187 

7 Pt000264 249 228 

8 Pt000265 176 189 

9 Pt000266 237 224 

10 Pt000267 253 247 

11 Pt000268 280 263 

12 Pt000269 289 259 

13 Pt000270 265 260 

14 Pt000271 241 254 

15 Pt000272 262 251 

16 Pt000286 286 264 

 

By regression we can determine the agreement between the estimates and the actual values for the count. Regression 

statistics are summarized in Table 6. The computed R Square value is 0.94, proving that the estimates agree with the 

manually counted values in a linear manner.  

 

Table 6 Regression statistics for coconut count 

Regression Statistics 

Multiple R 0.971436 

R Square 0.943688 

Adjusted R Square 0.939665 

Standard Error 11.70505 

Observations 16 

 

The standard error is 11.7 which can sometimes be corrected using some bias constant values. 

 

4. CONCLUSION 

 

The one-against-all approach in classifying coconut trees in 16 study areas in San Antonio, Quezon has been effective 

in differentiating coconut features from non-coconut features without the need to identify the other classes. Around 

90% accuracy levels are achieved using SVM classification algorithm through sample training datasets on 100m-by-

100m grids for each of the study areas. 

 

In addition, the proposed segmentation procedures is able to achieve the individual tree crown level for coconut trees 

and is achieving accurate estimates in 16 study sites, with a good R Square value for estimate and manually counted 

data regression. 
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