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ABSTRACT : Greenhouse gas inventories and emissions reduction programs require robust methods to quantify 
carbon sequestration in forests. Proper inventory of forest aboveground biomass (AGB) is required for accounting 
carbon emissions that forms the most vital part of the carbon cycle modeling and climate change mitigation 
programs in context to Reducing Emissions from Deforestation and Forest Degradation (REDD). Remote Sensing 
(RS) technology provides cost and time effective means for accurate temporal monitoring over large synoptic 
extents at local to global levels, and hence, is beneficial over conventional methods. The study presents a suitable 
approach for estimating AGB through the synergic use of multi-frequency X-, C- and L-band Synthetic Aperture 
Radar (SAR) data over tropical deciduous mixed forests of Munger (Bihar, India). Backscatter values generated 
from the raw SAR images were correlated with field-based AGB values and then regressed to generate best-fit 
models for AGB estimates with single and combined frequencies of COSMO-Skymed (X-band), Radarsat-2 (C-
band) and ALOS PALSAR (L-band). Among all the models for AGB estimation, the integrated model involving X, 
C- and L-bands showed the best results with r2=0.95, RMSE=14.81 t/ha and Willmott’s index of agreement of 0.95. 
Resulting modeled AGB were converted to carbon (C) and carbon dioxide (CO2) equivalents using conversion 
factors. Hence, the study proposed L-band for single frequency analysis and the combination of X-, C- and L-bands 
for multi-frequency analysis for tropical forest AGB and C estimation. The study revealed information regarding 
the spatial distribution and quantification of forest AGB and C required for REDD monitoring. 
 
 
1. INTRODUCTION 
 
‘400 ppm World’; an universal alarming situation where the global carbon dioxide (CO2) concentration surpassed 
the 400 ppm threshold level during 2016; a phenomenon which is permanent not likely to revert back in future 
(Betts et al., 2016). India being a mega-biodiversity country harbors forests that account for more than one fifth of 
the geographical area. Indian tropical forests are likely to experience extreme hasty and significant climate and 
vegetation changes over the next decades (Ravindranath et al., 2006). Globally this is a serious issue as tropical 
forests sequester one fifth of the global carbon (C) stock, and almost one half of the above-ground C, stored in 
vegetation of all biomes (Hunter et al., 2013). Biophysical indicators of forest C storage, viz. the above-ground 
biomass (AGB) are important for realizing the terrestrial C equilibrium (Sinha et al., in press). Sequestration of C in 
the vegetation is the only possible viable strategy in milieu of Reducing Emissions from Deforestation and forest 
Degradation (REDD) to maintain the atmospheric C balance and account for the CO2 released from forests 
(Waikhom et al., 2017). Henceforth, accurate estimates of biomass are a prerequisite for forest C accounting under 
REDD framework (Sinha et al., 2016).  
 
Sinha et al. (2015) have outlined detailed information regarding the biomass estimation methods, wherein, the 
remote sensing (RS)-based approaches have clearly outshined other methods. Optical sensors are recurrently used 



 

for AGB estimation (Kumar et al., 2013; Sharma et al., 2013), however, saturates early owing to poor sensitivity to 
forest parameters, unlike Synthetic Aperture Radar (SAR) and Light Detecting and Ranging (LiDAR) sensors 
(Sinha et al., 2015). Though both the systems are sensitive to forest spatial structure and standing biomass, SAR is 
favoured due to its wall-to-wall coverage which is absent in all LiDAR systems (Su et al., 2016). Currently SAR is 
extensively used in retrieving forest biomass (Sinha et al., 2015).  
 
Usually SAR data are acquired in X, C, L bands and sometimes in S and P bands as well. SAR backscatter from 
longer wavelengths, like L- and P-bands relate more to the forest biophysical parameters due to their greater 
penetration capabilities through the vegetation surfaces and are scattered/attenuated by trunk and main branches 
(Sinha et al., 2015). Synergic use of radar and optical sensor data has the potential to improve the estimation of 
forest AGB (Sinha et al., 2016). However, optical sensors suffers several drawbacks, like occurrence of frequent 
clouds in the tropics hampering the acquisition of the high quality satellite data, lack of volumetric estimations due 
to absence of penetrability of visible bands and low saturation levels of the spectral bands for biomass estimation 
(Sinha et al., 2015). Hence, the use of integrated multi-frequency SAR reveals greater potential for AGB estimation 
that can possibly overcome the limitations of optical sensors and single SAR sensors. Alappat et al. (2011) applied 
synergic model integrating SAR C- and L-bands and Englhart et al. (2011) used SAR X- and L-bands for biomass 
assessment. This study in addition integrates SAR backscatter data from X-, C- and L-bands to investigate 
relationships with field AGB to derive a synergic model to estimate above-ground bole biomass, from which C and 
CO2 has been enumerated. 
 
2. MATERIALS AND METHODS 
 
2.1 Site under investigation 
 
Munger forests in the state of Bihar (India) comprising the Bhimbandh Wildlife Sanctuary with geographic 
coordinates of 25º19'30''N-24º56'50''N latitude and 86º33'33''E-86º11'51''E longitude, covering an area of approx 
672.5 km2 has been considered as the test site for investigation (Figure 1). Summer temperature reaches 45oC, while 
winter experiences nearly 3-9oC. The average annual rainfall is around 1079 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Location of the study site 
 
2.2 Land use land cover details 
 
The backdrop of the site is a moist-deciduous mixed forest with over 89% of the area under forests. The study site 
mainly comprises of open and degraded mixed forests, with Shorea robusta, Acacia catechu, Madhuca longifolia, 
Dendrocalamus strictus, Diospyros melanoxylon and Terminalia tomentosa as the dominant floral species (Sinha et 
al., 2013). Located south of River Ganges, the entire area is drained by several small rivers, like Kiul, Man, 
Narokol, Morwe, Dudhpanian, Kandani, etc. The forest is a virgin patch with limited disturbances in terms of 
deforestation mainly due to dispersed anthropogenic activities like settlements, agricultural development and 
plantations and to some extent mining activities. Conservation of the forest is of high relevance for the conservation 
of biodiversity and also in context to REDD/REDD+. 
 
2.3 Data input 
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Multi-frequency SAR datasets of COSMO-Skymed, Radarsat-2 and ALOS PALSAR were procured to model for 
AGB prediction. The COSMO-Skymed data is HH/VV dual polarized X-band obtained through PINGPONG 
imaging mode with 15m (resampled to 25m) spatial resolution and 30km swath width. The Radarsat-2 data is 
Standard Quad-pol C-band with 25m spatial resolution and 25km swath width. The ALOS PALSAR data is L-band 
acquired in Fine Beam  Single (HH) and Dual (HH,HV), and Quad Polarimetric (HH,HV,VH,VV) mode with 25m 
spatial resolution, and off-nadir angles of 34.3° and 21.5°, and swath width of 70 and 30 km respectively. 
Simultaneously, primary data was generated in terms of field inventory that included in-situ information generated 
from field sample plots, like forest types, canopy density, species composition, stand height, and girth at breast 
height (GBH). 
 
2.4 In-situ field inventory for field biomass estimation 
 
A total of 45 square sample plots of 0.1 ha (Hectare) were randomly selected, 36 of which were considered for 
developing models, while the remaining for validating the models. The three most important data collected from 
field within each plot i.e., tree species, stand height and GBH; from which the diameter at breast height (DBH) were 
used to calculate the volume using the species-specific regional volumetric equations of FSI (1996). AGB is then 
estimated by multiplying the resulting volume with the tree-specific specific gravity of FRI (1996). Global 
Positioning System (GPS) was used to collect the latitude-longitude information of the plots for importing the 
information in GIS framework. Volumetric equations and specific gravity of the tree species for the study site are 
mentioned in Sinha (2016). 
 
2.5 SAR processing 
 
Raw SAR datasets were preprocessed, rectified, geocoded and calibrated using a series of standard steps in 
SARscape software to generate the backscatter image following the equation (Sinha et al., 2016): 

0)(10log100 ADNa +×=σ        (1) 
where, �0 = backscatter coefficient or sigma nought values in decibels (dB),DN is the power (or intensity) image, A0 
is the calibration factor that vary with sensor type. A0 = -115 dB for ALOS PALSAR, A0 = -59.62 dB for HH 
polarized COSMO-Skymed, A0 = -58.88 dB for VV polarized COSMO-Skymed. Radarsat-2 has different values of 
A0 for each line and is processed in Geomatica. 
 
2.6 Model development 
 
SAR backscatter values were regressed to the 36 field-based AGB values to find the best fit model for calculating 
AGB. The field-based estimated AGB was correlated with modeled AGB for 9 additional random points for 
validation of the best-fit model. The model performance was evaluated based on certain statistical measures (Sinha 
et al., 2016). Resulting modeled AGB (in t/ha) were converted to carbon (C) and carbon dioxide (CO2) equivalents 
using conversion factors of 0.5 and 3.67 respectively (Mushtaq & Malik, 2014, Rashid et al., 2016). 
 
3. RESULTS 
 
3.1 SAR interactions with AGB 
 
X-, C- and L-bands were used to develop the AGB model. Figure 2 shows the relationship between the SAR 
backscatter values and the in-situ plot AGB values, which showed the existence of a logarithmic relation. The figure 
also revealed that X-band saturated earliest, then the C-band, and lastly the L-band. The saturation level depended 
on the radar frequency or wavelength, radar wave polarization and vegetation types.  
 

 
 
 
 
 

 
 
 
 
 
 

Figure 2: Relationship between multi-frequency SAR backscatter with plot AGB 



 

 
X-band COSMO-Skymed VV polarized data interacted with the upper part of the canopy (leaves, small branches, 
etc.); as revealed by the increased r2 value in comparison to HH. With minimum penetration capability, X-band has 
the minimum interaction with the trunk and the main branches, so has the poorest relationship with the bole AGB. 
C-band having relatively greater penetration within the canopy layer interacts with the secondary branches and this 
is evident from higher r2 values.  L-band ALOS PALSAR showed the best correlation with the bole AGB due to its 
ability to penetrate the canopy layer and interact with the trunk. HH polarized data of L-band showed the greatest 
interaction with the trunk due to its vertical structure. Hence, HH polarization was most sensitive towards the bole 
AGB. It was observed that like-polarizations had high backscatter values than cross-polarizations and increase in 
the wavelength leads to increase in the penetration capability of the radar signals, thus providing more accurate 
information related to the bole above-ground biomass. Table 1 documents the correlation values. In this study, X-
band saturates earlier at about 40-50 t/ha, while C-band saturates next nearly at 100-120 t/ha, while, saturation is 
highest for L-band among the three, at about 160-180 t/ha (Figure 2).  
 

Table 1: Coefficient of determination (r2) between SAR backscatter and plot AGB 
  

SAR datasets Polarization r2 
X-band COSMO-Skymed HH 0.01 
X-band COSMO-Skymed VV 0.02 

C-band Radarsat-2 HH 0.46 
C-band Radarsat-2 HV 0.34 
C-band Radarsat-2 VV 0.43 

L-band ALOS PALSAR HH 0.85 
L-band ALOS PALSAR HV 0.56 

 
3.2 Integrated AGB model 
 
Three best-fit models (Equations 2, 3 and 4) were generated from this logarithmic relationship between backscatter 
values from each of the three SAR datasets (X-, C- and L-band respectively) and the plot AGB based on the 
information in Table 1 from 36 plots used for model development and calibration. Synergic modeling was 
developed using only those plots among the total 36 that were found in all the SAR datasets. An integrated AGB 
model was developed using Multiple Linear Regression (MLR) of Equations 2, 3 and 4 where the data were used in 
combination of all three datasets, expressed as Equation 5. The models are enlisted in Table 2. The models were 
evaluated based on certain statistical calculation, also documented in Table 2. The table indicated that the synergic 
model integrating SAR X-, C- and L-bands (Equation 5) showed the best results among all; while Equation 4 
involving just the L-band showed better results among all the single band models. 
 

Table 2: AGB model evaluation 
  

Eq. Model SAR data used r2 RMSE 
(t/ha) 

2 ( )σ o
e VVX _*0442.0

*984.94  X (VV) 0.01 46.18 

3 ( )σ o
e HHC _*1874.0

*58.380  C (HH) 0.28 37.24 

4 ( )σ o
e HHL _*2765.0

*3.1067  L (HH) 0.87 16.06 

5 ( ) ( ) ( )
8778.58

*2765.0
*984.1028

*1874.0
*3375.44

*0442.0
*504.103 ___ −+− σσσ o

e
o

e
o

e HHLHHCVVX  L (HH), C (HH), X (VV) 0.90 15.29 
 

3.3 Validation 
 
The AGB models were statistically validated with nine additional plot AGB data and the corresponding statistical 
measures, like r2, RMSE, slope, average absolute accuracy (�) and Willmott's Index of agreement (d) were executed. 
The results are summarized in Table 3. The table confirmed that the integrated AGB model (Equation 5) showed the 
best results with the highest r2 value of 0.954, least RMSE of 14.813 t/ha, good model accuracy of about 79% and 
greatest d value of 0.95. Significantly high r2, model accuracy and d values nearing unity and low RMSE value 
reveal the acceptability of the model. However, Equation 4 with L-band information also showed promising results 
amongst the single sensor models with a fairly high r2 value of 0.713, moderate RMSE of 22.34 t/ha, good model 
accuracy of 61.7% and d value of 0.88. 

 
 



 

 
Table 3: AGB model validation  

 
Eq. r2 RMSE (t/ha) Slope � d 
2 0.094 32.151 0.105 39.478 0.306 
3 0.002 50.083 -0.050 7.961 -0.095 
4 0.713 22.340 0.871 61.768 0.883 
5 0.954 14.813 0.964 78.894 0.950 

 
3.4 AGB and C maps 
 
The AGB map represented as Figure 3 was prepared from Equation 5 in GIS and reclassified in ten classes 
according to biomass levels from very low (<25t/ha and 25-50 t/ha), low (50-75t/ha and 75-100t/ha), moderate 
(100-125t/ha and 125-150t/ha), high (150-175t/ha and 175-200t/ha) to very high (>250t/ha). Resulting modeled 
AGB were converted to carbon (C) and carbon dioxide (CO2) equivalents using conversion factors and reclassified 
in five classes. Figure 4 illustrates both C and CO2 spatial distribution map. Both the figures 3 and 4 have white or 
empty regions within the boundary of the study area that lack the input SAR data owing to data restrictions. North 
portion of the of study site in the figures show erroneous results due to presence of non-overlapping portions of 
multi-sensor satellite data, demarcated in blue dotted line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: AGB map developed from integrated model 

 
Figure 3 portrays less vegetative parts with low biomass levels of <50 t/ha at the vicinity of the boundary of the 
study area, water bodies and the built-up regions that are concentrated in the periphery and at the central parts. Most 
of the forested region was observed to lie within the biomass range of 25–100 t/ha, with an average value of 56.24 
t/ha. Most of the high density vegetation was observed to have biomass ranging from 75–125 t/ha, mostly covering 
the interior parts of the study area; however, some scattered areas with even higher biomass values that too are 
generally restricted to the interior regions. Likewise, Figure 4 shows similar observation as C and CO2 were 
observed to be concentrated more in the interior parts of the area. Average C was calculated to 28.12 t/ha, while 
CO2 was 103.2 t/ha. It can be also noticed that the relative early saturation of biomass with the use of single SAR 
frequency data alone can be counteracted with the integrated use of multi-frequency SAR data due to the better 
relationship of AGB compartments to each of the SAR frequency bands. Hence, the integrated multi-frequency 
SAR model provided the most accurate result for predicting AGB. 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: C and CO2 spatial map  
 

4. CONCLUSIONS 
 
In this ‘400 ppm World’ , global climate change is the most alarming situation that this world is experiencing. In this 
context, REDD and associated concepts are gaining attention; henceforth, biomass/carbon assessment is becoming 
crucial to address this issue. The current study targets in using multi-frequency SAR to assess above-ground bole 
biomass and in-turn the forest carbon stock over a tropical deciduous heterogeneous virgin forest patch of Munger 
in India. Synergic use of multi-frequency SAR has the potential to augment the AGB estimations in comparison to 
any optical data as well as any single frequency spaceborne SAR data till date. Out of the X-, C- and L-bands, the 
best model predicting AGB comprises of L-band information. Subsequently, the estimation improves on integrating 
all the three SAR wavelength bands. The exponential model was observed as the best fit model for estimating 
biomass on regressing SAR backscatter values to plot estimated AGB. The integrated model was validated and r2 of 
0.95, RMSE of 14.81 t/ha, model accuracy of 79% and Willmott’ s index of agreement of 0.95 was calculated 
without much over or under-estimation as denoted by the slope value of 0.96. The consequence of the approach in 
resolving the relative early saturation of biomass with optical RS data or single SAR frequency data alone is evident 
thus can be counteracted with the integrated use of multi-frequency SAR data due to the better relationship of AGB 
compartments.  
 
Hence, in this study, a synergy regression model for predicting AGB was developed with synergic use of SAR 
multi-frequency X-, C- and L-band information that was further transformed to generate C stock and CO2 emission 
models in GIS. Quantifying multi-temporal changes in CO2 via this approach can account for the climate change. 
The integrated multi-frequency SAR approach adopted in the study gave valuable information of the spatial 
distribution and quantification of the forest biomass and carbon; important for REDD monitoring. 
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