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ABSTRACT:

Supervised classification of remotely sensed images is a classical method for change detection. The task requires training data in the
form of image data with known class labels, whose manually generation is time-consuming. If the labels are acquired from the outdated
map, the classifier must cope with errors in the training data. These errors, referred to as label noise, typically occur in clusters in object
space, because they are caused by land cover changes over time. In this paper we adapt a label noise tolerant training technique for
classification, so that the fact that changes affect larger clusters of pixels is considered. We also integrate the existing map into an
iterative classification procedure to act as a prior in regions which are likely to contain changes. Our experiments are based on three test
areas, using real images with simulated existing databases. Our results show that this method helps to distinguish between real changes
over time and false detections caused by misclassification and thus improves the accuracy of the classification results.

1. INTRODUCTION

The updating of topographic databases (referred to as maps for
brevity) is typically based on a classification of current remote
sensing imagery. Comparing the results to the map, areas of
change can be detected and the map can be updated accordingly.
Supervised classification is commonly used for that purpose, re-
quiring representative training data that are typically generated in
a time-consuming manual process. The latter could be avoided
by using the existing map to derive the class labels of the training
samples. As the map may be outdated, classifiers using the class
labels derived from the map for training must take into account
the fact that some of these labels will be wrong. Nevertheless,
changes typically only affect a relatively small part of a scene, so
that one can assume the majority of the training data to be correct.

In machine learning, errors in the class labels of training data are
referred to as label noise (Frénay and Verleysen, 2014). In remote
sensing, the problem has mostly been dealt with by data cleans-
ing, i.e. by detecting and eliminating wrong training samples,
e.g. (Radoux et al., 2014). An alternative is to use probabilistic
methods for training under label noise which also estimate the
parameters of a noise model. An example for such an approach
is the label noise tolerant logistic regression (Bootkrajang and
Kabán, 2012), which has been applied successfully in the context
of remote sensing in (Maas et al., 2016). However, the underlying
noise model of that technique assumes wrong labels to occur at
random positions in the image. This is not a very realistic model
for change detection, where changes typically occur in clusters,
e.g. due to the construction of a new building, and may lead to a
degradation of the classification performance.

Using the existing map has another potential benefit. As change
is usually a rare event, the existing class labels can be seen as
providing observations for the prediction of the new class labels.
This may be particularly useful in areas where the classifier can-
not distinguish the class label by the given features well, e.g. at
object borders. The corresponding probabilities for the classes
to be correct are related to the probability of observing a wrong

label and, thus, to the parameters of a probabilistic noise model
(Bootkrajang and Kabán, 2012). However, such an assumption
again neglects the fact that changes typically occur in compact
clusters. It would typically lead to a strong bias for maintain-
ing the class label of the map, which is desired in areas without
changes, but may limit the prospects of detecting real changes.

In this paper, we propose a new supervised classification method
that tries to extract as much benefit as possible from the avail-
ability of the existing map. Firstly, our method uses the class
labels from the map for training. This is achieved by expanding
the method by Bootkrajang and Kabán (2012) to take into ac-
count that changes typically occur in clusters, which we expect
to improve the results in scenes with a large amount of change.
Secondly, the class labels of the existing map are included as
observations in a classification procedure based on Conditional
Random Fields (CRF). We propose an iterative procedure to re-
duce the impact of the observed class labels in compact areas that
are likely to have changed, which we expect to improve the clas-
sification results in areas of weak features without affecting the
detection of real changes too much. For evaluation we use three
data sets with different degrees of simulated changes.

2. RELATED WORK

Of the basic strategies for change detection identified in Jianya et
al. (2008), we apply the one in which changes are inferred from
differences between the independent classification of a current
image and the existing map, because no sensor data are assumed
to be available for the time of the acquisition of the existing map.
Nevertheless, the existing map will be integrated into the classi-
fication process, which is also the focus of this paper.

For the reasons pointed out in Section 1, a training procedure tak-
ing the class labels of the training samples from an existing map
must cope with label noise. Frénay and Verleysen (2014) differ-
entiate three types of statistical models for label noise. The noisy
completely at random (NCAR) model does not consider depen-
dencies between label noise and other variables. In the noisy at
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random (NAR) model, the probability of an error depends on the
class label. If the dependencies between labelling errors and the
observed data are considered, the model is called noisy not at ran-
dom (NNAR). This would be an appropriate choice in our case to
model that label noise typically occurs in clusters in image space.
We do not build a NNAR model explicitly, but we use one im-
plicitly by an iterative strategy for reducing the impact of training
samples forming clusters of potentially changed pixels. Existing
NNAR models tend to analyse the distributions of the training
samples in feature space, e.g. assuming label noise to occur more
likely near the classification boundaries or in low-density regions
(Sarma and Palmer, 2004). Apart from being drawn from another
domain than image classification, this is not a model of local de-
pendencies between label noise at neighbouring data sites.

Frénay and Verleysen (2014) distinguish three strategies for deal-
ing with label noise. First, classifiers that are robust to label noise
by design can be used, e.g. random forests, but they still may
have difficulties with large amounts of label noise (Maas et al.,
2016). The second strategy tries to remove training samples af-
fected by label noise from the training set. Such data cleansing
methods have been criticised for eliminating too many instances
(Frénay and Verleysen, 2014). The third option is to use a classi-
fier which is tolerant to label noise. In this context, probabilistic
approaches learn the parameters of a noise model along with the
classifer in the training process; examples are (Bootkrajang and
Kabán, 2012), using logistic regression as the base classifier, and
(Li et al., 2007), presenting a method based on the kernel Fisher
discriminant. An example for a non-probabilistic approach is the
label noise tolerant version of a Support Vector Machine (SVM)
(An and Liang, 2013). However, non-probabilistic methods typ-
ically do not estimate the parameters of a noise model, e.g. tran-
sition probabilities containing the probability for the observed la-
bel to be affected by a change (Bootkrajang and Kabán, 2012),
which may be used as temporal transition matrices in our appli-
cation, linking the observed class labels of the map to class labels
at the second epoch (Schistad Solberg et al., 1996).

In the domain of remote sensing, classification under label noise
seems to be based on data cleansing in most cases. An example
is (Radoux et al., 2014), who include two techniques for elimi-
nating outliers to derive training data from an existing map. The
first technique removes training samples near the boundaries of
land cover types and the other one removes outliers based on a
statistical test, assuming a Gaussian distribution of spectral sig-
natures. Designed for data of 300 m ground sampling distance
(GSD), the model assumptions, e.g. Gaussian distributions, can-
not be used directly for high resolution images. A similar method
was used for map updating in (Radoux and Defourny, 2010), us-
ing Kernel density estimation for deriving probability densities.
Another data cleansing method is reported in (Jia et al., 2014).
Similarly to the method proposed in this paper, all pixels from an
existing map are used for training and the resulting label image
is compared to the existing map to detect changes. However, no
parameters of a model for label noise are estimated in the train-
ing process. This is also true for the data cleansing method based
on SVM reported in (Büschenfeld, 2013), who eliminate training
samples that are assigned to another class than indicated by the
given map or that show a high uncertainty. Label noise tolerant
training using maps for deriving training data was done by Mnih
and Hinton (2012). They propose two loss functions tolerant to
label noise to train a deep neural network, but their method only
deals with binary classification problems. Bruzzone and Persello
(2009) include information of the pixels in the neighbourhood of
the training samples in the learning process to achieve robust-

ness to label noise in a context-sensitive semi-supervised SVM.
Although the authors argue that such a strategy can be used to
integrate existing maps for training, this is not shown explicitly.

In (Maas et al., 2016), we applied label noise tolerant logistic re-
gression (Bootkrajang and Kabán, 2012) to use an existing map
for training, integrating it into a CRF for context-based classi-
fication. The experiments showed that the method is tolerant
to a large amount of label noise if it is randomly spread over
the image, as would be expected for a method based on a NAR
model. However, experiments with more realistic changes were
only shown with a small percentage of wrong training labels, and
the class labels from the existing map were not used in the clas-
sification process. The latter was done by Schistad Solberg et al.
(1996), who applied a temporal model based on transition prob-
abilities to include an outdated land cover map in multitemporal
classification, but no local dependencies between changes were
considered. In this paper we want to expand our previous work
(Maas et al., 2016) by considering the fact that changes occur in
clusters. Label noise logistic regression Bootkrajang and Kabán
(2012) is applied in an iterative procedure in which the impact
of training samples in areas of potential change is reduced, while
these samples are not completely eliminated. To consider local
context, the resultant classifier was integrated in a CRF, in which
we also consider the original class labels as additional observa-
tions. In contrast to (Schistad Solberg et al., 1996), the influence
of these observations may change in the course of an iterative pro-
cess if a pixel is situated in a large cluster of potentially changed
pixels, so that temporal oversmoothing (Hoberg et al., 2015) can
be avoided. Our method can be seen as a combination of ”soft”
data cleansing (because samples are not eliminated completely)
with a probabilistic noise model for including the observed labels
from the map. Thus, we expect to be able to cope with a larger
amount of real change than our previous method.

3. LABEL NOISE TOLERANT CHANGE DETECTION

We assume remotely sensed data and an existing but outdated
raster map to be available on the same grid. The data consist
of N pixels, each pixel n represented by a feature vector xn =
[x1n, ..., x

F
n ] of dimension F, calculated from the imagery, and an

observed class label C̃n ∈ C = {C1, ..., CK} from the exist-
ing map. C denotes the set of classes and K is the total num-
ber of classes. As the database may be outdated, the observed
labels may differ from the unknown true labels Cn ∈ C. Col-
lecting the observed and the unknown class labels in two vectors
C̃ = (C̃1, ..., C̃N )T and C = (C1, ..., CN )T , respectively, and
denoting the observed image data by x, it is our goal to find the
optimal configuration of class labels C by maximising the joint
posterior P (C|x, C̃) of the unknowns given the observations. In
this process, we use the class labels of the outdated map for de-
riving the class labels of the training samples. We start by out-
lining our modified version of the training procedure for logistic
regression by Bootkrajang and Kabán (2012) (Section 3.1). In
Section 3.2, we show how logistic regression is integrated into a
CRF (Kumar and Hebert, 2006) together with a model for con-
sidering the existing class labels C̃ as observations. Section 3.3
describes the new iterative procedure for training and inference.

3.1 Label noise robust logistic regression

Classification is based on logistic regression, a discriminative
probabilistic classifier that directly models the posterior proba-
bylity p(Cn|xn) of a class label Cn given the feature vector xn.



A feature space transformation Φ(xn) may be applied to achieve
non-linear decision boundaries in the original feature space. In
the multiclass case the posterior is modelled by (Bishop, 2006):

p(Cn = Ck|xn) =
exp
(
wT
k ·Φ(xn)

)
∑K
j=1 exp

(
wT
j ·Φ(xn)

) (1)

where wk is a vector of parameters for a particular class Ck.
As the sum of the posterior over all classes has to be 1, these
parameter vectors are not independent, so that w1 is set to 0; the
other vectors are collected in a joint parameter vector w.

In our case, each training sample consists of a feature vector
xn and the observed label C̃n. In order to consider this fact in
training, Bootkrajang and Kabán (2012) model the probability
p(C̃n|xn) as the marginal distribution of the observed labels C̃n
over all values the unknown class labels Cn may take:

p(C̃n = Ck|xn) =
K∑
a=1

p(C̃ = Ck|C = Ca) p(Cn = Ca|xn)

(2)
where p(C̃ = Ck|C = Ca) is the probability for a specific type
of label noise affecting the two classes Ca and Ck. These tran-
sition probabilities for all class configurations form the K x K
transition matrix Γ with Γ(a, k) = γak = p(C̃ = Ck|C = Ca).
The transition matrix Γ contains the parameters of a NAR model
which are estimated along with the parameters w in eq. 1. Be-
cause this kind of model is unrealistic to describe changes in land
cover, we introduce a weight gn ∈ (0...1] for every sample n
to control its influence in the training process. In the beginning,
these weights are all set to 1; Section 3.3.3 describes how they
are changed iteratively to consider the assumption that changes
occur in local spatial clusters. To deterimine the unknown param-
eters w and Γ, we apply maximum likelihood estimation of the
unknown parameters with a Gaussian prior over w for regularisa-
tion. Taking the negative logarithms of the involved probabilities,
this results in the minimisation of the following target function:

E(w,Γ) = −
N∑
n=1

gn ·
K∑
k=1

tnk ln(Snk) +
wTw

2σ2
. (3)

In eq. 3, tnk is an indicator variable taking the value 1 if C̃n =
Ck and 0 otherwise, Snk = p(C̃n = Ck|xn) as defined in eq. 2,
and the rightmost term corresponds to a Gaussian prior with zero
mean and covariance σ · I, where I is a unit matrix.

We use the Newton-Raphson method (Bishop, 2006) for minimis-
ing E(w,Γ). In each iteration τ , the parameter vector wτ is
determined from wτ−1 according to wτ = wτ−1 −H−1∇E,
where∇E = [∇w2E

T , ...,∇wKE
T ]T is the gradient ofE(w,Γ):

∇wjE =

N∑
n=1

gn · (fnj − tnj)Φ(xn) +
1

σ2
w. (4)

In eq. 4 we use the shorthand fna = p(Cn = Ca|xn) for the

posterior in eq. 1, and tnj = fnj
∑K
k=1

(
γjk

tnk
Snk

)
. The Hessian

matrix H consists of (K-1) x (K-1) blocks Hij = ∇wi∇wjE:

∇wi∇wjE =

N∑
n=1

gn
(
fnifnjξ + Iij(fnj − tnj)

)
Φ(xn)Φ(xn)

T

+
δ(i = j)

σ2
I

where ξ =
∑k
k=1

(
γjkγik

tnk
S2
nk

)
, Iij are the elements of a unit

matrix, and δ(·) is the Kronecker delta function delivering a value
of 1 if the argument is true and 0 otherwise.

Optimising for the unknown weights requires knowledge about
the transition matrix Γ, which, however, is unknown. Bootkra-
jang and Kabán (2012) propose an iterative procedure similar to
expectation maximisation (EM). Starting from coarse initial val-
ues for Γ, the parameters w of the classifier are updated as just
described. Using these weights, the transition matrix Γ is updated
afterwards, expanding the updating step presented in (Bootkra-
jang and Kabán, 2012) by the weights gn:

γτ =
1

c
γτ−1
jk

N∑
n=1

gntnk
fnj

Sτ−1
nk

,

where c =
∑K
l=1

(
γτ−1
jl

∑N
n=1 gntnl

fnj

Sτ−1
nl

)
and

Sτ−1
nk =

∑K
j=1 γ

τ−1
jk fnj .

This alternating update of the parameters w and Γ is repeated un-
til a termination criterion is reached. The estimated parameters w
are related to a classifier delivering the posterior for the unknown
current labels Cn, not the noisy labels C̃n.

Note that this training with equal weights gn was already used
in (Maas et al., 2016). In this paper this is just the case in the
beginning of the training procedure. Note that the transition ma-
trix Γ only represents the transition between the old database and
the current labels in this initial step with equal weights gn. If the
weights of training samples in large clusters of potential changes
are low (cf. Section 3.3.3), the majority of the samples affected
by label noise will have a low impact on the result, so that Γ only
represents residual label noise of small local extents for which the
NAR model is a sufficiently good approximation.

3.2 CRF considering the existing map

CRFs are graphical models consisting of nodes and edges that
can be used to consider local context in a probabilistic classifi-
cation framework (Kumar and Hebert, 2006). The nodes of the
underlying graph represent random variables whereas the edges
connect pairs of nodes and describe their statistical dependen-
cies. Here, the unknown nodes correspond to the current labels
Cn of all pixels n, and the edges are defined on the basis of a
4-neighbourhood on the image grid. As described above, the ob-
served variables are the image data x and, different from (Kumar
and Hebert, 2006), the observed class labels C̃ (cf. fig. 1 for the
structure of the graphical model). The joint posterior P (C|x, C̃)
of the unknowns given the observations is modelled by:

P (C|x, C̃) =
1

Z
exp
[∑

n

(
Ax(Cn,x) +Am(Cn, C̃n)

)
+
∑
n,m∈ε

I(Cn, Cm,x)
]
, (5)

were Z is a normalization constant and ε is the set of edges in
the graph. The association potential Ax(Cn,x) connects the un-
known label Cn of pixel n with the image data x. Its dependency
from the entire input image x is considered by using site-wise
feature vectors xn(x), which may be a function of certain im-
age regions. Any discriminative classifier can be used to model
this potential (Kumar and Hebert, 2006); here, it is based on the
posterior p(Cn|xn) of logistic regression according to eq. 1:

Ax(Cn,x) = ln p(Cn|xn). (6)



The interaction potential I(Cn, Cm,x) describes the statistical
dependencies between a pair of neighbouring labels Cn and Cm.
In this paper, the contrast-sensitive Potts model is used for that
purpose, which results in a data-dependant smoothing of the re-
sultant label image (Boykov et al., 2001):

I(Cn, Cm,x) = δ(Cn, Cm) · β0
(
β1 +

(
1− β1

)
· e
(
−∆x2

2σ2
D

))
,

(7)
where the parameters β0 and β1 describe the overall degree of
smoothing and the impact of the data-dependent term, respec-
tively, σD is the average squared distance between neighbouring
feature vectors, ∆x =‖ xn−xm ‖ is the distance of two feature
vectors xn and xm, and δ(·) is the Kronecker delta function.

The observed labels are related to the unknown class labels by
the temporal association potentialAm(Cn, C̃n), derived from the
probability of the unknown label given the observed one:

Am(Cn, C̃n) = θn · ln p(Cn = Ck|C̃n = Ca) (8)

In eq. 8, there is an individual weight θn ∈ [0...1] for every pixel
n. This weight models the influence of the observed label on the
classification result of this pixel in inference. As we shall see in
Section 3.3, these weights will be adapted in the inference process
to reduce the impact of the observed labels for pixels that are very
likely to belong to a larger area affected by a change.

x

Co Cp

Cn Cm

C̃o C̃p

C̃n C̃m

Figure 1. Graph structure of the expanded CRF: C: unknown
labels, C̃: observed labels, x: image data.

3.3 Training and inference

In order to obtain the optimum configuration of the current class
labels given the observations by maximising P (C|x, C̃) accord-
ing to eq. 5, a joint iterative training and inference strategy is
applied. After the determination of initial parameters of the asso-
ciation potential and the parameters of the temporal association
potentials in an initial training phase, an iterative scheme of clas-
sification and re-training is applied in which the weigths of pixels
in large areas of potential change according to the current classi-
fication result are modified to reduce their impact on the results.
These steps are described in the subsequent sections.

3.3.1 Initial training and classification: In the initial train-
ing phase, the observed labels and the data are used for label noise
robust training of the logistic regression classifier that serves as
the basis for the association potentials of the CRF. For that pur-
pose, the method described in Section 3.1 is applied, using iden-
tical weights gn = 1 for all training samples. This will result
in an initial set of parameters w for the association potentials

and a transition matrix Γ that contains the transition probabilities
p(C̃n = Ca|Cn = Ck) of the NAR model (Bootkrajang and
Kabán, 2012). According to the theorem of Bayes, these prob-
abilities are related to the probabilities p(Cn = Ck|C̃n = Ca)
required for the temporal association potential (eq. 8) by:

p(Cn = Ck|C̃n = Ca) =
p(C̃n = Ca|Cn = Ck) · p(Cn = Ck)

p(C̃n = Ca)

As we have no access to the distribution of the unknown class
labels p(Cn), we assume p(Cn = Ck) ≈ p(C̃n = Ck) to derive
the temporal association potential from Γ. These parameters are
kept constant in the subsequent iteration process for the reasons
already pointed out in Section 3.1: the transition matrix corre-
sponds to the real transition probabilities only in the first iteration
(when all training samples have an identical weight gn = 1). The
parameters of the interaction potentials (β0, β1; cf. eq. 7) are set
to values found empirically.

For the determination of the optimal configuration of labels C =
argmax(P (C|x, C̃)) loopy belief propagation is used (Frey and
MacKay, 1998). In the initial classification, the weights θn of the
temporal association potentials is set to 0 for all pixels, so that this
classification is only based on the current state of the association
and the interaction potentials.

3.3.2 Iterative re-training and classification: By comparing
the current label image with the outdated map, areas of potential
changed areas can be detected. This information is used to up-
date the weight gn of each training sample, and label noise robust
training of the logistic regression classifier is repeated, using the
updated weights. The way in which the weights are updated is
explained in Section 3.3.3. Training will result in new values for
the parameters w of the association potentials of the CRF.

Furthermore, the information about potential areas of change is
also used to change the weights θn of the temporal association
potentials as explained in Section 3.3.4. Using the updated pa-
rameters w and weights θn, another round of inference is carried
out, which will lead to an improved classification result. This
procedure of updating weights on the basis of the current state
of the classification results, re-training and inference is repeated
until the proportion of weights that are changed in an iteration is
below a threshold or a maximum number of iterations is reached.
The procedure is inspired by re-weighting strategies for robust es-
timation in adjustment theory, e.g. (Förstner and Wrobel, 2016).

3.3.3 Weights gn of training samples: The weight gn of a
training sample n should be high for samples which are probably
not affected by a change and low for other ones. The weights are
initialised by gn = 1 as long as no information about changes
is available. After classification, the resulting labels Cn can be
compared to the map C̃n to generate a binary map BC of po-
tential changes. However, as indicated in fig. 2(b) for an aerial
image, this binary map will also contain classification errors.

To distinguish between real changes and classification errors three
assumptions are made. First, classification errors often occur at
object boundaries, e.g. because of mixed pixels or because of
matching errors if digital surface models (DSM) are used in clas-
sification. Thus, a set of connected foreground pixels in BC
forming a line that is thinner than a threshold s is very likely
caused by classification errors. Such sets are removed by mor-
phological filtering using a structural element of size s. The sec-
ond assumption is that changes occur in clusters having a cer-



tain minimum size. This is considered by removing all con-
nected components of foreground pixels in BC which cover an
area smaller than a threshold u. The third assumption is that in
areas affected by cast shadows, the quality of spectral information
or of the DSM (if available) is poor and, thus, potential changes
as indicated by BC are very likely to correspond to classification
errors. To detect shadow areas, the median and the mean of the
image intensity in each cluster cl is compared to the median and
the mean of the entire images. If meancl < meanimg/2 and
medcl < medimg/2, i.e., if the pixels in the cluster are very
dark compared to the image, the pixels belonging to cluster cl are
removed from the binary map of potential changes BC . The re-
maining foreground pixels in BC are likely to correspond to real
changes (cf. fig. 2(d) for an example).

For pixels corresponding to the foreground inBC , the weights gn
are decreased by a constant c, so that in iteration t+1, the weight
of the corresponding samples is given by gt+1

n = max(gtn−c, ξ).
The minimal weight is set to a small constant ξ to avoid numerical
problems. The weights of pixels that belong to the background
in BC are updated according to gt+1

n = min(gtn + c, 1). As
a consequence, the weights of pixels that are considered to be
changes will be reduced in each iteration; however, a pixel may
regain influence if in a certain iteration its most likely class label
is identical to the one from the map, e.g. due to the influence of
its neighbours or due to the temporal model.

(a) Orthophoto (b) Pixels with Cn 6= C̃n

(c) True changes (d) Clusters of change

Figure 2. Example for the identification of potential areas of
change. Black / gray: changed / unchanged pixels. Red
rectangle in (b): a cluster that corresponds to a shadow.

3.3.4 The weights θn of the temporal association potential:
The weight θn of pixel n regulates the impact of the temporal
association potential and, thus, the influence of the outdated map
to the resulting label configuration C (cf. eq. 8). If a pixel is
probably not affected by a change, the weight θn should be high,
otherwise it should be low. The initial weight for each pixel is 0,
because in the beginning we do not want to bias the result to reject
potential changes. In the subsequent iterations, the binary map of
potential changes used to adapt the weights gn of the training
samples (cf. Section 3.3.3) is also used to guide the adaptation of
the weights θn of the temporal model, because the same assump-
tion w.r.t. to the plausibility of a potential change indicated by the
current classification results apply. In iteration t+1, the temporal
association potentials for pixels corresponding to the foreground
in BC will the be weighted by θt+1

n = max(θtn − c, 0). The
corresponding weights of pixels that belong to the background in
BC are updated by θt+1

n = min(θtn + c, 1).

4. EXPERIMENTS

4.1 Test data and test setup

We used three datasets in our experiments. The first one consists
of a part of Vaihingen data of the ISPRS 2D semantic labelling
contest (Wegner et al., 2015). We use ten of the training patches,
each consisting of about 2000 × 2500 pixels. For each patch,
a colour infrared true orthophoto (TOP) and a DSM are avail-
able with a ground samling distance (GSD) of 9 cm. The refer-
ence consists of five classes: impervious surfaces (sur.), building
(build.), low vegetation (veg.), tree, and car. As cars are not a
part of a topographic map, this class was merged with sur. For
each pixel, we defined a feature vector xn(x) consisting of the
normalised difference vegetation index (NDVI), the normalised
DSM (nDSM), the red band of the TOP smoothed by a Gaussian
filter with σ = 2, and hue and saturation obtained from the TOP,
both smoothed by a Gaussian filter with σ = 10. These features
were selected from a larger pool based on the feature importance
analysis of a random forest classifier (Breiman, 2001).

The other two data sets are based on satellite imagery and were
also used in in (Maas et al., 2016). The first one consists of a
Landsat image from 2010 of an area near Herne, Germany, with
a GSD of 30 m and a size of 362× 330 pixels. The second dataset
consists of a RapidEye image of an area near Husum, Germany,
from 2010. Its GSD is 5 m and its size is 3547 × 1998 pix-
els. In both cases only the red, green and near infrared bands
are available. The reference contain four classes residential area
(res.), rural streets, forest (for.) and cropland (crop.). As the
class rural streets is underrepresented in both images, we merged
it with cropland. In both datasets, 19 features were selected: four
Haralick features (energy, contrast, homogenity and entropy) re-
lated to texture, the mean and variance of five spectral features
(near infrared band, intensity, hue, saturation and ndvi) in a lo-
cal neighbourhood of 6 × 6 pixels and the values of the same
spectral features smoothed by a Gaussian filter with σ = 5.

For Vaihingen, we used a feature space mapping Φ(xn) based
on quadratic expansion, whereas for Husum and Herne no fea-
ture space mapping was used. The hyperparameter for regular-
isation in eq. 3 was set to σ = 10. The initial values for the
transition matrix Γ (cf. Section 3.1) were γij = 0.8 for i = j
and γij = 0.2/(K − 1) for i 6= j, where K is the number of
classes. The initial values for the parameter vector w of logistic
regression were determined by standard logistic regression train-
ing without assuming label noise. The parameters of the contrast-
sensitive Potts model were set to β0 = 1.0 and β1 = 0.5. The
thresholds for updating the weights (Section 3.3.3) depend on the
GSD. For Vaihingen, the threshold for object borders s was set
to 0.5 m, assuming wrong classifications near object borders to
be caused by errors in the nDSM or mixed pixels. The minimal
size u of an object is set to 4 m × 4 m (i.e., smaller than a small
house). For the satellite data, s is set to 2 pixels, because mis-
takes caused by the nDSM do not exist, and u is set to 250 m ×
250 m, assuming this is the minimum size of a new residential
area or field. The value c for updating the weights (Sections 3.3.3
and 3.3.4) was found empirically and set to 0.1. Except for the
dataset of Herne, where all pixels are used due to the small image
size, just about 20% of the data are used for training to reduce
the processing time. The iteration is terminated (Section 3.3.2) if
either less than 0.01% of the weights for the observed labels in
classification change or if at least 40 iterations have been done.

For all experiments we manually changed the reference to sim-
ulate an outdated map. For each patch of the Vaihingen dataset



three simulated maps were created, each with a different amount
of change. For Herne and Husum, the changed map from (Maas
et al., 2016) were used. Based on these data, we carried out four
experiments. In the first experiment (Init), training and classifi-
cation was carried out as in (Maas et al., 2016), i.e. without iter-
ative re-training and classification (gn = 1 = const, θn = 0 =
const). The second experiment (Vg) is based on our method,
but without considering the outdated map (θn = 0 = const). It
shows the impact of the sample weights gn introduced in section
3.1 in the training step. The third experiment (Vθ) uses constant
training weights gn = 1, but does apply the modified weights
θn to include the map information. The last experiment, Vg

θ ,
uses our method with weight modification both in the training and
classification steps. In each case, we compare the results to the
reference on a per-pixel basis, determining the overall accuracy
(OA) as well as completeness and correctness per class (Heipke
et al., 1997). Comparing the simulated map with the real refer-
ence shows the amount of change in the corresponding data set,
and the resultant quality indices are also reported (map); 100% -
OA of map gives the amount of simulated change in each exper-
iment. We do not distinguish a training set from a test set because
an outdated map is always used, at least for training.

4.2 Results and evaluation

4.2.1 Vaihingen: Fig. 3 shows the OA of all patches achieved
for three versions of the outdated map (map 1 – map 3) for Vai-
hingen. In most cases the variant Vg

θ achieves the best OA (85%-
90%), but variant Vθ performs at a similar level, and both vari-
ants clearly outperform the variants without weights and without
considering the outdated map (Init, Vg). Obviously, the inclu-
sion of the outdated map has a relatively high impact on the qual-
ity of the results, improving the OA by 2%-10%. This is mainly
caused by an improved classification at object boundaries or at
individual pixels. In fact, in some cases, the variants not consid-
ering the outdated map lead to results where a larger percentage
of change than actually present is predicted, so that the corre-
sponding OA is lower than the one indicated by map.
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Figure 3. Overall accuracy for the four variants in Vaihingen.

The advantage of considering the sample weights gn in training
becomes more obvious for experiments with a large amount of
change. If the level of change is small, it can be compensated
by the original method based on the NAR model (Maas et al.,
2016). If the label noise cannot be compensated by the NAR
model any more, considering the weights can improve the results.

One example is patch 17 (fig. 4). It contains three buildings with
a brighter appearance than the rest (blue rectangles in fig. 4(a)).
Only one of them is contained in the outdated map (fig. 4(b)).
Without considering the weights (variant Init, fig. 4(c)), one
building is mostly classified as veg. In variant Vg the two changed
buildings are correctly detected (fig. 4(d)). Another difference
between the results of variants Init and Vg is the label of the
vineyard which belongs to the class veg. but is often classified as
tree in experiment Init. Without considering weights, the proba-
bility p(Cn|xn) is low for all classes in the area of the vineyard,
so that the classification results are not reliabe. By considering
the sample weights in experiment Vg , the probability p(Cn|xn)
for the class veg. is much higher than for the other classes. How-
ever, because the vineyard has a similar appearance to trees, the
tree marked in fig. 4(c) is also classified as veg. in Vg .

(a) Orthophoto (b) Outdated map 3

(c) Init (d) Vg

Figure 4. Data and results from patch 17 (Vaihingen). Red:
build., dark green: tree, light green: veg., gray: sur.. Blue

rectangles: highlighted objects discussed in the text.

For patch 5 (fig. 5) and the otudated map 3 with more than 30%
label noise, OA is always below 61% (fig. 3). In this case nearly
50% of all building pixels are labeled as sur. in the outdated map.
This amount of label noise cannot be dealt with by the original
method (Init). The transition probabilities γii for no change for
build. and sur. determined in the initial training step are close to
1 and, thus, not very accurate. Consequently, the iterative weight
updating procedure does not converge to the correct solution.

(a) Orthophoto (b) map 3 (c) Init (d) Vg
θ

Figure 5. Data and results from patch 5 (Vaihingen). Red: build.,
dark green: tree, light green: veg., gray: sur.

Figs. 6 and 7 show the completeness and the correctness of the re-
sults. Both quality indices are higher for variants Vθ and Vg

θ than
for the others, which again highlights the importance of using the
outdated map for classification. Using the sample weights gn in
the training process does not improve the completeness in most
cases, but it does have a small positive impact on the correctness.

For buildings, we also provide an evaluation on a per-object ba-
sis, counting a detected building (i.e. a connected component of
pixels classified as build.) as a true positive if more than 70% of
its area overlaps with a reference building. Because small build-
ings are often not included in maps, buildings smaller than 16m2
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Figure 6. Average completeness over all patches in Vaihingen.
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Figure 7. Average correctness over all patches in Vaihingen.

were excluded from the evaluation. The mean completeness and
correctness of all areas are shown in tab. 1. Again, variant Vg

θ

achieves the best completeness (98.9%) and correctness (82.5%).
However, variants Vθ and Vg do not perform significantly worse
considering the standard deviations of the quality indices. Never-
theless one can notice an positive impact of the new developments
presented in this paper (variants Vg , Vθ and, particularly, Vg

θ )
compared to the original algorithm (Init) (Maas et al., 2016).

Vg
θ Vθ Vg Init map

Corr. 99 [4] 99 [4] 96 [8] 93 [14] 91 [11]
Compl. 82 [19] 80 [17] 82 [18] 75 [20] 74 [13]

Table 1. Completeness and correctness on a per-object basis for
buildings; mean of all areas in % [standard deviation in %]

4.2.2 Herne and Husum: As the amount of change in Husum
and Herne is quite small (3% - 4%), using the sample weights gn
does not affect the results much; the OA changes by less than
0.6%. Thus, this section focuses on the impact of using the out-
dated map for classification. In tab. 2 OA, completeness and cor-
rectness are shown for both datasets for variants Init and Vθ .
All values are larger for variant Vθ by a large margin, the OA
increasing by 13.9% for Herne and by 5.2% for Husum. One
reason for that increase is the improvement of the delineation of
object borders. As the features all depend on a local subset of
pixels, borders of objects are blurred in the standard classifica-
tion process. In variant Vθ these areas can be correctly classified
in regions without change. If regions of change are smaller than
the threshold u (Section 3.3.3), considering the map has the same
effect, which may lead to cases in which such small changes are
not detected. An example for such a situation in Herne with vari-

ant Vθ is indicated by a blue rectangle in fig. 8(d). To highlight
the potential for detecting changes despite using the existing map
for classification, tab. 3 shows the OA achieved for pixels in the
areas affected by a change. The results show that the improved
OA for the entire image caused by the inclusion of the outdated
map (cf. tab. 2) comes at the cost of a reduced OA in the changed
areas. In Husum, this reduction in OA is low (0.8%). In Herne
it is somewhat larger (7%), though still considerably smaller than
the improvement for the entire scene (14.4%).

(a) Reference (b) Outdated map

(c) Init (d) Vθ

Figure 8. Label images for Herne. Dark green: forest, light
green: crop., red: res.. Blue rectangle: an undetected change.

Dataset Herne Herne Husum Husum
Vθ Init Vθ Init

OA 89.7 75.8 96.7 91.5
res. 95.7 83.4 88.7 79.3

Compl. for. 76.8 54.9 91.5 77.7
crop. 92.4 81.6 98.2 94.4
res. 81.2 74.3 87.5 72.2

Corr. for. 96.7 69.7 92.2 75.2
crop. 93.8 79.4 98.3 95.9

Table 2. OA, completeness, correctness for Husum and Herne.

Herne, Init Herne, Vθ Husum, Init Husum, Vθ

75.9 % 68.9 % 92.6 % 91.8 %

Table 3. OA of Husum and Herne for areas affected by a change.

5. CONCLUSION AND FUTURE WORK

In this paper we presented a iterative method for supervised clas-
sification under label noise making use of the existing map both
for training and in the classification process. No manual effort
for the generation of training data was required. In both, the
training and the classification procedure we considered the fact
that changes in land cover usually appear in clusters. In training
this was achieved by using a weight for each training sample in
order to reduce the impact of samples in larger areas of change.
By adding the labels of the map to the CRF as weighted observa-
tions, our method includes the map information for pixels which
are unlikely to correspond to changes. Thus, new objects can be
found without the additional map information while pixels prob-
ably not affected by label noise can take advantage of this prior
information.



We tested our method using datasets with different properties and
varying degrees of label noise. Due to our re-weighting scheme
for training samples the method can also deal with larger amount
of noise, but the improvement brought about by this strategy was
smaller than expected. The inclusion of the map information to
the CRF has a considerably larger positive effect, largely due to a
better classification of pixels near object boundaries. The actual
changes are detected nearly as good as without considering the
map in classification, although very small changed objects might
not be detected. These observations could be made independently
from the GSD of the images. A major limitation of the method is
that each cluster in feature space still must contain enough correct
training samples for it to work. If the results of the base classi-
fier in the initialization step are sufficiently good, considering the
map in the classification can improve the results considerably.

In our future work we want to expand our model by images from
other epochs, so that not only the map can help to improve the
classification result, but also other image data. Additionally we
want to expand our experiments to data with real changes to see
how our method works under more realistic circumstances in terms
of the extent of change, level of detail or number of classes.

ACKNOWLEDGEMENTS

This research was funded by the German Science Foundation
(DFG) under grant HE-1822/35-1. The Vaihingen data set was
provided by the German Society for Photogrammetry, Remote
Sensing and Geoinformation (DGPF) (Cramer, 2010):
http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html.

REFERENCES

An, W. and Liang, M., 2013. Fuzzy support vector machine based
on within-class scatter for classification problems with outliers or
noises. Neurocomputing 110, pp. 101–110.

Bishop, C. M., 2006. Pattern recognition and machine learning.
1st edn, Springer. New York (NY), USA.

Bootkrajang, J. and Kabán, A., 2012. Label-noise robust logistic
regression and its applications. In: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases,
Springer, pp. 143–158.

Boykov, Y., Veksler, O. and Zabih, R., 2001. Fast approximate
energy minimization via graph cuts. IEEE Transactions on pat-
tern analysis and machine intelligence 23(11), pp. 1222–1239.

Breiman, L., 2001. Random forests. Machine learning 45(1),
pp. 5–32.

Bruzzone, L. and Persello, C., 2009. A novel context-sensitive
semisupervised svm classifier robust to mislabeled training sam-
ples. IEEE Transactions on Geoscience and Remote Sensing
47(7), pp. 2142–2154.
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