Detection and Identification of Targets using Fusion of HSI and LiDAR Data
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ABSTRACT:

A target in remote sensing may be defined as an object/activity of interest. Detection of targets is an essential
requirement in numerous defence and civilian applications. Though primarily, the problem of target detection can
be defined as a binary hypothesis testing problem which confirms the presence or absence of targets of interest,
however, detection of a target itself may not be sufficient in decision making. Therefore, its classification and
identification is also the key. Detection and identification of target using remote sensing data is a challenging task.
Different remote sensing data such as hyperspectral (HSI), SAR, LiDAR data etc. have been used for detection of
targets. Hyperspectral data, due to its high spectral information, has recently gained momentum in target detection
but these may be limited to indicating presence of targets. Therefore, fusion of different datasets may be necessary.
In this paper, an approach for detection and identification of two types of targets (vehicle and tree) using decision
level fusion of HSI and LiDAR data has been proposed. Firstly, spectral detection using HSI data has been
implemented. Next, LiDAR point cloud classification has been performed and used for computing morphological
parameters for each target. Lastly the decisions obtained from HSI, LiDAR and morphological analysis have been
fused to infer identity of desired targets. Results demonstrated that both types of targets have been successfully
identified using the proposed approach.

1. INTRODUCTION

Resolving a target of interest using remote sensing data is one of the primary requirement in various
applications/activities of military reconnaissance missions, intelligence, surveillance, traffic monitoring, disaster
management and rescue operations efc. Such applications require information beyond mere detection of targets
(Knox et al., 2014; Puckrin et al., 2012; Chang 2007). For example, for strategic planning in military combat
intelligence applications, although it is important to confirm presence of the target but it is equally important to
recognize the target, discriminate it from similar targets and also to know the count of the target. Such applications
not only require to confirm presence of the target but also provide other details about the target and thus making
target detection a more comprehensive process. The target detection process may also involve classification,
discrimination, identification/recognition and quantification (Chang, 2007), as shown in Figure 1.
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Figure 1: Target detection process

As seen from Figure 1, these processes are interrelated and thus can be used in conjunction with each other for
more accurate target declaration. Target in remote sensing applications are often resolved on the basis of spectral
and spatial characteristics of the target (Manolakis 2003), and contextual information is often used as
supplementary information (Mahmoudi et al., 2015; Guo et al., 2013; Galleguillos et al., 2010).



Over the years, detection and identification of targets based on the spectral or spatial properties has evolved
significantly in terms of sensor technology and development of advanced algorithms. In the case of algorithms
based on spectral properties, one of the major developments has been development of fine resolution hyper-spectral
sensors capable of capturing data in several contiguous spectral bands thereby facilitating detection and
identification of small targets. Detection using HSI however suffers from some issues such as dimensionality
reduction, operational conditions existing in real time environment at the time of capture of data, such as variation
in illumination, type of target, occlusion efc.(Dias et al., 2013; Nasarbadi, 2014; Friman et al, 2011; Manolakis
2003). Similarly in the case of analysis based on spatial properties, many algorithms based on spatial properties of
target such as feature extraction, shape matching, object based recognition efc. have been reported in literature for
target detection and identification (Borcs and Benedek, 2015; Varney and Asari, 2014; Sun et al., 2013). These
however are computationally intensive, require high resolution data, involve costly and target oriented data
acquisition with small field of view. In addition, spatial properties are often dependent on target-sensor geometry.
Therefore, uncertainties in real environment may induce variability in reflectance spectra or geometry of the target
and thus may interfere with detection of targets. These may affect detection by either missing the target or by
incorrectly detecting other objects as targets (false alarms). However, a target detection application often demands
high accuracies. Literature suggests that accuracy of detection can be improved using fusion of data of different
modalities. For instance, an algorithm based on spectral properties may declare a tree and shrub as same targets.
However, spatial information in conjunction with spectral information can help to accurately distinguish such
spectrally similar targets. Likewise, using only height may result in detecting some of the tree points into targets
and may fail to distinguish targets with same height but of different materials. Therefore, fusion of
supplementary/complementary data provided by multiple sources can produce better understanding of the
area/target being investigated. Additionally, such detailed information enables detection as well identification of
targets and thus improves the accuracy (Du et al., 2013; Bigdeli et al., 2013; Yun et al., 2004).

Dalponte et al. (2012) performed fusion of HSI and LiDAR data for classification of tree species in
Southern alps of Trento, Italy. They used hyperspectral data acquired using AISA Eagle sensor (having 126 band
captured between 402.1 to 989.1 nm range and 1m spatial resolution), multispectral data obtained from GoeEye-1
satellite over area of interest (having four spectral band with 2 m spatial resolution and one panchromatic channel
with 0.5 spatial resolution) and LiDAR data acquired using Optech ALTM3100EA (1m spatial resolution). Two
combinations of datasets have been considered i.e. HSI with LIDAR and multispectral with LiDAR. Next, support
vector machine and random forest classifier were used on both of the data combinations. Results demonstrated that
higher accuracies were achieved using HSI-LiDAR datasets. Also, species of most of the trees could also be
determined with this dataset. Thus, several studies have been reported for combined usage of HSI and LiDAR data
for extraction of buildings, tree species identification, classification efc. (Tiede et al., 2015; Park et al. 2013).
These however have many limitations such as requirement of high point density LIDAR data, are computationally
expensive and may not work for small targets efc.

In this paper, detection and identification of different types of targets have been performed using decision
level fusion of hyperspectral data and LiDAR data. Detection has been performed using a popular detection
algorithm namely Spectral Angle Mapper (SAM) for generating sufficiently accurate detection. Next for improving
accuracy of detection, instead of exploring other suitable detection algorithms, an approach involving more
thorough processing has been proposed. This approach includes a detection step and an identification step. The
main idea is that any standard target detection algorithm will provide pixels belonging to target. These pixels
however may also contain false alarms along with targets. Further an identification step has been applied. This
involves extracting geometry of the target. The geometry has been compared with a priori available knowledge of
the target. Lastly, a decision level fusion has been used for removing false alarms and confirming the identity of
target with user visually examining all of the information obtained in comparison with a priori available knowledge
of the target.

2. DATA

This study uses two different datasets i.e. co-registered hyperspectral (HSI) and LiDAR data, covering Rochester
Institute of Technology (RIT) campus, New York. Both these datasets have been collected during a campaign
(Herweg et al., 2012) conducted by RIT in conjunction with SpecTIR, LLC during July 26 - 29, 2010. An
orthorectified true color image of the area is shown in Figure 2(a). Two different types of targets, including natural
and man-made targets i.e. tree and vehicle, have been considered.

2.1 Hyperspectral Data

Hyperspectral (HSI) data consisting of 360 bands ranging from 390 to 2450 nm with spectral resolution of 10 nm
and spatial resolution of 1 m. It is captured using ProSpecTIR-VS2 sensor. From this data, a spatial subset of size
161 x 61 pixels covering region containing targets of interest has been generated. The targets considered include
vehicle, tree, building and fabrics, as shown in Figure 2(b).



2.2 LiDAR Data

LiDAR point cloud captured using Leica ALS60 has also been used. It is co registered with HSI data. This data has
spatial resolution of 1 m and average point density of 4 points per meter square. A subset of LIDAR point cloud
covering the same area as that of hyperspectral subset has been used, as shown in Figure 2(c).
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Figure 2: (a) Ortho-rectified true color image of RIT Campus (b) Hyperspectral image
(c) LiDAR point cloud
2.3 Ground Truth Data

The ground truth database includes ground photos, positional measurement (latitude & longitude), 16 bit material
reflectance spectrums (collected using ASD Field Spectro-radiometer) for each target. A high resolution RGB
ortho-image of the study area has also been also provided.

This study considers two different types of targets, as shown in Figure 3, i.e. a vehicle and a tree. Each
target is different in terms of its shape and material composition etc. These diverse targets have been chosen for
validating the effectiveness/generalization of proposed approach.

(b)
Figure 3: Ground photo of (a) Vehicle and (b) Tree

3. METHODLOGY & IMPLEMENTATION

In remote sensing applications, targets can be differentiated by its material composition, placement, location and its
shapes efc. These characteristics may help in detection and identification of the targets using different types of
remote sensing data. In this paper, spectral as well as shape information about the target has been used for
performing detection and identification of the target. The targets have been analyzed spectrally using hyperspectral
data and geometrically (shape based) using LiIDAR data. Lastly, detection and identification of different types of
targets have been performed using decision level fusion of results obtained from hyperspectral and LiDAR data.

The approach developed involves a three step procedure. First, detection of target on hyperspectral data
using Spectral Angle Mapper (SAM) has been performed. The detection of target pixels thus obtained has been
referred to as potential target. The locations of these potential targets have been saved as seed locations for further
processing. Second, LiDAR point cloud has been classified into five classes, namely, ground, building, vehicle, tree
and fabric targets. These classes have been identified on the basis of a priori knowledge about the study area.
Further, a class obtained from classification of LIDAR point cloud at seed locations of potential target is referred as
potential target class. The LiDAR points, belonging to the potential target ( as indicated from the detections in
HSI), have been used to measure the morphological details of the target. The values obtained are then matched with
morphological parameters of actual target. This has been done to retain only target points and discard false alarms.



Lastly, a decision level fusion, using results obtained from HSI processing and LiDAR processing, has been carried
out for identification of each target. The work flow of methodology used for detection and identification of the
desired targets is shown in Fig. 4.
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Figure 4: Flow chart of overall methodology
3.1 HSI Processing

In HSI, detection has been performed using Spectral Angle Mapper (SAM) algorithm. SAM has been chosen since
it is invariant to illumination variations. SAM performs target detection by computing the cosine of angle between
the spectrum of pixel under test and target reference spectrum. Value of the angle lies between zero and one
(Kumar et al., 2008; Chang et al., 2001). Mathematically, it can be defined as,
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Where i is number of band, t; = spectrum pixel under test and r; = target reference spectrum. This is computed
for each band. The algorithm compares each pixel spectrum with the reference spectrum. A smaller angle represents
closer match to the reference spectrum. The computed angle is thresholded to generate a binary image indicating
presence or absence of the target. The detections obtained using SAM provide pixels of desired targets. The
locations of these potential targets have been considered during LiDAR processing.

3.2 LiDAR Data Processing

LiDAR point cloud has been processed in two steps. Step 1 involves classification of point cloud on the basis of
height and shape of desired classes. Step 2 involves computation of morphological parameters of the target.

3.2.1 LiDAR point cloud Classification: In this step, LiDAR point cloud has been classified to locate and
extract all 3D objects that exist in the entire area irrespective of the objects identity. It is done by processing range
information of LIDAR data to delimit and isolate each of the individual 3D objects. LIDAR point cloud has been
progressively classified into five user defined classes, namely, ground, building, vehicles, tree and fabric. These
classes have been selected on the basis of a priori knowledge about features present in the study area. At each step,
a set of LIDAR points are assigned to any one of these desired classes and classification of balance of the LIDAR



points is continued till all the points are assigned uniquely to one of the desired classes based on its height and 3-D
shape.

Firstly, the points belonging to ground are separated from non ground points using progressive
densification of triangulate irregular network (TIN) surfaces (Axelsson, 2000). In this method, lowest point in a
grid of size 200 m has been chosen as initial ground points. Other ground points are then added to the initial set of
points if their angle and distance to initial points is less than 6 degrees and 1.4 m respectively. These values have
been fixed by trial and error. This is repeated till no other point meeting the criterion is left. Next, points belonging
to building class have been classified from non ground points. For this, point which along with its neighbouring
points forms a planar surface (representing roof) are considered for building class. The points belonging to surface
with area greater than 40 m” are labelled as building points. This pre determined threshold is decided on the basis of
knowledge about buildings in the study area. In addition, points considered for building class are checked for single
echo return. Rest of the non ground points are classified into tree, vehicles and fabric class on the basis of height,
intensity, contextual information and supervised visualization of its morphology/shape. Lastly, refinement in
classification of each class is done by visually comparing the classified LIDAR cloud with a high resolution RGB
orthoimage provided as reference data. This is done by overlapping the classified LiDAR cloud over a RGB
orthoimage and manually correcting the misclassified points. LiDAR processing also helped on improving the
accuracy of spectral detection obtained using HSI. This has been done by investigating each of the detection in
classified LiDAR point cloud and removing false positives/detections. Before rejecting any potential target detected
during spectral detection, its shape and height values were assessed with respect to that for each desired target. This
helped in removing false alarms generated during spectral processing/detection.

At the end of this step, the presence and the location of the targets have been defined but a definite
knowledge about their identity has not been investigated. In next step, the point cloud regions coincident with
locations of potential targets detected in previous step are considered for further investigations.

3.2.2 Extraction of morphological parameters: This step is performed after LIDAR point cloud classification.
Points belonging to previously selected regions are used to extract morphological information of the region. Several
morphological parameters such as area, volume, rectangularity etc. have been used in several studies for detection
and identification of targets (Aktaruzzaman et al, 2010). In this paper, nine parameters have been used as
descriptors of target structure/geometry and/or shape. These structural descriptors include length, width, height and
contextual information, topological relation, structure, elevation profile. In addition, shape of the target is obtained
using digital surface model and alpha shape. These have been used as for interpreting identity of the target. The
parameters have been extracted by removing points of all other classes except the desired target and using the
points of that class for measuring the parameters.

i. Dimensions (Length, width and height): The dimensions of the target class have been measured and compared
with the dimensions of actual targets.

ii. Structure: It has been used to investigate whether the target is planar, linear or volumetric. For example, a
road and a building, both made up of concrete but structurally a road is linear whereas a building has planar roof.
iii. Topological relation with ground has been measured to capture position of the target relative to the ground.
iv. Contextual information: It is defined as the information pertaining to target with respect to surrounding of
the target (Mahmoudi et al., 2015). Contextual information is not obtained directly by appearance of the target. It
is obtained from surroundings of the target. Context may provide useful information for target recognition tasks
(Guo et al., 2013; Galleguillos et al., 2010).

v. Elevation profile provides shape of the surface of the target and may aid in its identification.

vi. Digital surface model (DSM) is created using height of first return of LIDAR point cloud and  therefore can
be used to represent natural and built features. The DSM is generated by resampling the irregularly spaced
LiDAR into regular spaced pixels. The size of pixel is an important factor which needs to be determined prior to
resampling (Chang, 2008). Large pixel size may result in information loss and a very small value for pixel size
may lead to redundancy. Literature suggests that optimum size of pixel can be approximated from mean point
density of the LiDAR data.

In this study, a separate DSM has been generated for each target using points of the respective class and

ground class only. This has been done to remove any distortion/confusion in shape with other classes. By
comparing the DSM with a priori available/known shape of considered target, the identity of desired target has
been established.
vii. Alpha shape can be used to represent shape of spatial point sets (Edelsbrunner et al., 1983). Alpha shapes are
generalizations of convex hull (Saeed ef al., 2013) and have been used in several researches for representing
shapes of a desired object (Weygaert et al., 2010). Here, alpha shapes have been used for representing shape of
each of the target considered. For extracting alpha shape of target class, alpha radius has been set to 0.75 and 5 for
vehicle and tree respectively.



3.3 Decision Level Fusion

In this experiment, hyperspectral and LiDAR data have been fused for detection and identification of different types
of targets. A decision level fusion has been considered because it preserves the unique characteristics of both
datasets and allows usage of appropriate algorithms for maximising the information obtained from each of the
dataset (Shiomani, 2012; Kanaev, 2011). However, the ideal fusion method is highly application and data
dependent (Pohl er al., 1998). Mathematically, three sources of information i.e. Sy, S, and S; has been used to
obtain local decisions i.e. dy, d; and d3 about identity of the target. The information obtained from local decisions
dy, d, and d; have been fused to obtain overall decision D. The identity of target being investigated is obtained
using D and a priori knowledge about target being investigated, as shown in Figure 5.
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Figure 5: Decision Level Fusion

Therefore, the decision (D) about identity of potential target is taken on the basis of three sets of
information such as spectral identity (obtained by spectral matching in HSI data) (d;), visual analysis ( obtained
from three dimensional view generated in classified LIDAR point cloud) (d;) and geometrical analysis (obtained by
comparing computed morphological parameters with a priori knowledge) (ds).

4. RESULTS & DISCUSSSIONS

The detection and identification of targets have been implemented in three parts. The results of the implementations
of each part have been discussed in following sections.

4.1 HSI Processing

Binary images obtained after implementing SAM for detection of vehicle, fabric targets, tree and building with their
own reference spectra are shown in Figure 6(a), (b), (c) and (d) respectively.

(a)Vehicle target (b) Tree target
Figure 6: Binary images depicting detection of vehicle and tree target using SAM



Following observations may be drawn from images in Figure 6,

1. Several pixels of the vehicle used for drawing the reference spectra have been detected. Besides, several
other vehicles have also been detected (Figure 6 (a)). This may be due to the fact thaet al.l vehicles are quite
similar in terms of material composition and thus reflectance properties.

2. Several pixels of the tree target have been detected (Figure 6(b)). In addition, pixels of other trees located in
the scene have also been detected.
Therefore, HSI processing provides group of pixels for each target. Location of the most central pixel in
each target has been extracted and used as seed location for further processing.

4.2 LiDAR Data Processing
Results obtained after LIDAR point cloud classification and morphological analysis have been discussed below,

4.2.1 LiDAR point cloud classification: The results of LIDAR point cloud classification is shown in Fig 7. All of
the five pre defined classes namely ground, building, tree, vehicle and fabric were classified. Each of the class has
been a assigned different color as shown in the legend in Fig. 7.
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Figure 7: Classified LiDAR data

From visually inspecting the classification results, it may be observed that most of the points belonging to vehicle
and tree class were delineated with the help of height difference of these points with respect to ground. Points of
each target class have been considered for further processing.

4.2.2 Morphological analysis: In this step, LIDAR regions coincident with the locations of potential targets
detected in HSI are considered for computation of nine morphological parameters. These parameters include length,
width, height, context, topological relation, structure, elevation profile, digital surface model and alpha shape. The
values obtained are summarized below:

i. Vehicle target: The values of the nine morphological parameters measured for vehicle target are summarized in
Table 1.
Table 1: Morphological parameters of vehicle target class

i) Length: 5.01 m vii) Elevation Profile
il) Width: 1.7 m
iii) Height: 1.5 m

iv) Context: placed on flat surface

v) Topological relation: perpendicular to ground
vi) Structure: Volumetric

viii) Digital Surface Model ix) Alpha shape

Car Alpha Shape
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The geometric properties have been used to support identification of the vehicles. In aerial imaging, vehicles forms
rectangular shapes in different orientations and have a specific elevation profiles. Dimensions of few of the actual
vehicles commonly used in the study i.e. New York, USA are summarized in Table 2.

Table 2: Dimensions of actual vehicles

Model Length(m) | Width(m) | Height(m)
1 | Potential Target (obtained from proposed method) 5.01 1.7 1.5
2 Kia Optima 4.85 1.855 1.47
3 Land Rover 4.59 1.91 1.72
4 Tesla 4.98 1.95 1.45
5 Toyota prius 4.45 1.75 1.47
6 Mercedes Benz 5.05 1.90 1.42
7 Cadiillac 4.72 1.85 1.42
8 BMW X35 4.87 1.94 1.76

The estimated dimensions (Table 1), have been compared with the actual dimensions of vehicles (Table 2). The
dimensions of estimated vehicle have been found to be similar to actual vehicles like length of potential target is
5.01 m and average length of actual vehicles is 4.89 m . Visual analysis of elevation profile, DSM and alpha shape
provided in Table 1 (vii, viii and ix) indicates identity of the target as a vehicle. Thus, on the basis of dimensional
similarity and shape analysis, the potential target appears to be a car.

ii. Tree target: Table 3 summarizes the values of the parameters obtained for a tree target.

Table 3: Morphological parameters of tree target

i) Length: 7.3 m vii) Elevation Profile
ii) Width: 5.4 m

iii) Height: 1.87 m

iv) Context: placed on flat or elevated surface

v) Topological relation: Perpendicular to ground
vi) Structure: Volumetric

viii) Digital Surface Model ix) Alpha shape

Tree Alpha Shape
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The dimensions of a tree may vary. In fact, dimension of same tree may vary with each season. Therefore,
dimensions cannot be used as reliable metric for comparison and identification of a tree. However, alpha shape,
digital surface model have been used assessing the identity of potential target.

5.5.3 Decision Level Fusion: Identity of the targets have been established using decision level fusion of spectral
and structural/morphological information obtained from HSI and LiDAR based analysis. For each of the targets
considered, significant results/parameters contributing towards establishing identity of the target are summarized
below,

i. Vehicle target: For inferring identity of potential vehicle target,

d, = {Location, Spectral Identity} , d, = {3 dimensional Shape} and d; = {Length, Width, Height, Alpha
Shape, DSM, Elevation Profile, Topological Relation, Contextual, Structural parameter}. Using D=(d; U d, U d;)
along with a priori knowledge about target, the potential vehicle target has been identified as a car.




ii. Tree: The identity of potential tree target has been established using a computed decision D=(d; U d, U dj)
where d; ={Location, Spectral Identity} ,d, ={3 dimensional Shape} and d; ={ Alpha Shape, DSM}. Note that in
case of tree and building targets, dimensions didn't contribute in decision making. This is because these targets may
have varying dimensions and thus dimensions can't be used a reliable measure.

Therefore, the identity of each of the target have been detected and identified by performing decision level
fusion using hyperspectral and LiDAR data. The benefit of shape information was shown to be a promising way to
improve of spectral detection of targets in real operational environment. Further, the results obtained have been
verified by comparing the locations of the detection with a priori known location of the targets. Location of centre
most pixel of the target have been extracted for the purpose of comparison as summarized in Table 6.

Table 6: A comparison of locations of targets obtained and that available from reference data

Name of Target Location of Target(from Results) Location of Target(from Reference
(latitude/longitude) data) (latitude/longitude)
Vehicle (centre most pixel) 281981.43 N, 4773838.08 W 281985.48 N, 4773839.85 W
Tree (centre most pixel) 281985.47 N, 4773825.58 W 281986.83 N, 4773828.67 W
5. CONCLUSIONS

The efficacy proposed approach for detection and identification of different types of targets using decision
level fusion of hyperspectral and LiDAR data was demonstrated in this paper. The method implemented for
detection and identification of targets performs spectral analysis using HSI data followed by structural analysis
using LiDAR data. Results obtained demonstrated the potential of the approach for detection and identification
of both of the target of different shapes and composition. It has been found that a priori known volumetric
target such as vehicle, trees can be accurately identified using this approach. However, identification of targets
with very low height with respect to ground can be challenging.

Therefore combined usage of HSI and LiDAR data provide additional information about targets and future work
will focus on investigating potential of the proposed technique for identification of targets with very low height
with respect to ground and also to perform identification in presence of clutter, illumination variance, and
occlusion.
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