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ABSTRACT: High spectral resolution of hyperspectral sensors finds applications in various scientific domains like 

specific mineral identification and hence, capable of replacing the traditional techniques such as multispectral remote 

sensing and field-based approach for mineral exploration. 

Airborne Hyperspectral data is used. Minimum Noise Fraction (MNF) algorithm is used for the reduction of 

the dimensionality of data. PPI and n-Dimensional visualization are used for the extraction of the endmembers (pure 

pixels). The endmembers belong to clay minerals, carbonate minerals, iron-bearing minerals and other minerals 

(sulphates, silicates, oxides etc.) classes. Those endmember spectra are used for the different mapping algorithms i.e. 

SAM, MTMF. 

Different mapping algorithms illustrate the different results. SAM uses the spectral angle and MTMF maps 

single target with the help of matched filtering (MF) and suppresses the background while MT for detection of the 

erroneous positive pixels. MTMF method provides the better results than SAM. MTMF also discriminates the 

settlement from the mineral zones. 

 

1. INTRODUCTION: Remote Sensing is a technology used for the data acquisition of the objects which are 

located at distance or remote regions and perform analysis for the interpretation (Sabins, 1999) of the physical 

attributes of the acquired data. Electromagnetic Radiation (EMR) wavelength ranges from visible to 

microwave region are used for the data acquisition in remote sensing (Gupta, 2003). Multispectral remote 

sensing imagery pixels are having discrete spectral bands (Ting & Fei, 2012), so it is not much helpful for 

detection of the minerals of same classes (Pippi, 1989). Hyperspectral Remote sensing is much helpful for the 

detection and mapping of different minerals of same classes (Swayze et al., 1992). It provides spatial as well as 

spectral contiguous bands of the earth surface for mineral mapping (Goetz et al., 1985). Spectral bands of a 

pixel give the precise and accurate information about the objects. High spatial resolution (2-20 m) and high 

spectral resolution (5 -10 m) data are provided by the airborne sensors (Kruse, 2002; Kruse, Boardman, & 

Huntington, 2003). 

 

2. RESEARCH DATASET AND AREA: 

 

2.1 Dataset Used: 

2.1.1 Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG): AVIRIS-NG 

instrument has been developed by Jet Propulsion Laboratory (JPL) of NASA. This is ground based as well as the 

airborne instrument. It has been developed to provide continued access to high signal-to-noise ratio (Dennison et 

al., 2013; Hamlin et al., 2011).  
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Figure 1: Study Area (Jahazpur) 

AVIRIS-NG measures reflected electromagnetic energy of the wavelength range from 380 nm to 2510 nm (Hamlin 

et al., 2011) with a narrow bandwidth of 5 nm for spectral sampling. It is across track (whisk broom) imaging 

spectrometer. Spatial resolution is of 8.1 m and having 425 bands for a better approach. 

2.1.2 ASD FieldSpac4 Spectroradiometer: The ASD FieldSpac4 Spectroradiometer covers the range of 

wavelength 350 nm to 2500 nm and having three different spectral resolution sensors 3 nm (350-1000 nm), 10 nm 

(1000-1800 nm), and 10 nm (1800-2500 nm). 

2.2 Research Area:  

2.2.1 Location: The study area located near to Jahazpur city of Bhilwara district in Rajasthan, India. The study 

area extends from latitude 25º26'34.80'' to 25º30'7.20'' in the North and longitude 75º10'22.80'' to 75º14'16.80'' in 

the East of the south-eastern part of Jahazpur city. The study area is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



Figure 2: Digitized Geological Map of the Area 

2.2.2 Regional Geology: The Precambrian geology of Rajasthan is earlier studied by Coulson, (1933), Gupta, 

(1934), Gupta & Mukherjee, (1938), Heron, (1936), and Heron, (1953), it helped to create a basic framework. 

Heron, (1953) had a most significant contribution for the erection of basic framework of Precambrian geology. 

The antiquity in the basement rocks was first recognized by Heron, (1953). 

Bhilwara Supergroup is the oldest geological record in Rajasthan region. It contained the rocks in the south-

central part of Rajasthan. The geologist Gupta et al., (1981) had considered the Sandmata Complex, 

Mangalwar Complex, and Hindoli Group and their sub-divisions, as a part of basement region so they 

considered that groups into Bhilwara Supergroup. The trend of the BSG rocks is NNE-SSW. The geological 

map is digitized by using the District Resources Map of Bhilwara (GSI, 1998). The digitized geological map of 

the study area is illustrated in Figure 2. 

 

 

 



Stratigraphy: The stratigraphic sequence of the Bhilwara Supergroup is given by Gupta et al., (1997). The 

stratigraphy of the study area of BSG is described in Table 1: 

a. Hindoli Group: The Hindoli Group located around 20 Km north-west of Bundi. It comprises of greenschist 

(low-grade) sequences. The Hindoli belt has trended in the southern part is NNW-SSE while in the northern 

part it got changed to ENE-WSW. Change of the trend in the northern region is confined within two Ductile 

Shear Zones (DSZ), running sub-parallel to the Hindoli’s regional axial trend.  

The major lithologies of this group are metavolcanics along with slate, shale, phyllite, dolomite, quartzite, 

mica schist and limestone. Lithofacies are also recorded in the Hindoli Group (Shrivastava, 2011). 

Table 1: Stratigraphy of the Study Area. Source: (GSI, 2004) 

Age Supergroup Group Formation Lithology 

 

 

 

Lower 

Proterozoic 

 

 

 

Bhilwara 

Supergroup 

 

 

 

Jahazpur Group 

 

Ummedpura 

Formation 

Carbonaceous/purple phyllite 

Orthoquartzite 

Dolomite 

Grey phyllite (tuff) & dolomite with BIF 

Conglomerate/gritty quartzite 

Jawal Formation Dolomite with BIF 

Conglomerate & gritty quartzite 

Archean Hindoli Group Sujanpura 

Formation 

Metagreywacke 

Phyllite ± garnet 

 

b. Jahazpur Group: Lithoassemblages (coarse clastics, carbonates, pelite and iron formation) of the Jahazpur 

Group is unconformably overlies the rocks of the Hindoli Group. The trend of the Jahazpur Group rocks is 

NNE-SSW. Rocks of Jahazpur Group is in the form of two linear belts. Each of the belts is having a length of 

around 70 Km and width is 3 Km at the widest region. The turbidite-volcanic sequence is associated with the 

Hindoli Group in the eastern belt while the western belt unconformably overlies the rocks of Hindoli Group 

and it is extended from Jawal (SW) to Dhanola (NE). 

BIF, carbonaceous phyllite, dolomitic marble, breccia, chert, arkose mica schist, orthoquartzite, gritty quartzite 

and polymictic conglomerate are the major litho-assemblages of the Jahazpur Group. 

 

3. METHODOLOGY: The AVIRIS-NG consist of the 425 contiguous bands in which spectral data along with 

the noise is present so Data Preprocessing is required for the noise management. Along with the noise 

management, water absorption bands are also removed. Minimum Noise Fraction (MNF) is done for the 

reduction of the dimensionality of the data because hyperspectral data consist of the greater amount of the 

spectral information but the volume of data is very huge. Green et al., (1988) developed the MNF transform 

for ordering components in the form of image qualities. They had chosen a new component to adequately 

increase (maximize) the SNR and images are arranged with the increasing quality/decreasing noise. It is a 

modified form of Principal Component Analysis (PCA). MNF transformation divided the data space into two 

subspaces: (a) components having large eigenvalues (signal subspace) and (b) components having eigenvalues 

approximately one and noise is dominated (noise subspace). Boardman, Kruse, & Green, (1995) proposed the 

algorithm of Pixel Purity Index (PPI). It is widely used for the extraction of endmembers from hyperspectral 

imagery. To find the spectrally pure (unique) pixels from the dataset, PPI algorithm plays an important role. n-

Dimensional (n-D) visualizer is an interactive procedure for the extraction of the pure pixels (endmembers) 



Figure 3: Spectral Angle Mapper 
(SAM) 

Figure 4: Working of MTMF. Source: (Boardman 
& Kruse, 2011) 

spectra from the spectral mixing space (Boardman & Kruse, 2011). According to Boardman, (1993), points to 

be considered as spectra in the n-dimensional scatterplot, n represents the number of bands. Count of the 

spectrally pure endmembers and their spectral signatures are estimated on the basis of the points distribution in 

n-dimensional space (Boardman, 1993; Boardman & Kruse, 2011; Boardman et al., 1995). The Spectral 

Angle Mapper (SAM) was developed to compute the similarities of spectrum between the unknown material 

reflectance spectra with reference material reflectance spectra. SAM works on an assumption that every pixel 

of an image belongs to a particular ground cover class and uniquely fall under that category (Addamani & 

Venkat, 2014). SAM computes the angle between the test (pixel/unknown) spectra and reference spectra (as 

shown in Figure 3) by assuming them as vectors in the space of n-D, it expressed in the following equation 1: 
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 Where: 

 α = spectral angle,   

 n = number of bands,  

 t = unknown (test) spectrum,  

 r = reference spectrum 

 

Boardman, (1998) had developed the Mixture Tuned Matched Filtering (MTMF) technique. MTMF is a 

 sub-pixel (partial) based algorithm. It is a combination of the Linear Spectral Mixing (LSM) model and the 

 Matched Filtering (MF) model. 

The MTMF algorithm mainly consists of the three steps (Goodarzi Mehr et al., 2013): 

a. Apparent reflection data to get an MNF transformation (Green et al., 1988). 

b. For the estimation of the abundance, MF is done. 

c. MT for identification of the erroneous positive pixels (Boardman, 1998). 

 

The capability of the MF technique is to map single target (known) 

and to avoid the other endmembers which are in the background 

(as shown in Figure 4). MT is the unique and most powerful aspect 

of the MTMF method. MT allows the detection and rejection of 

the erroneous positives that are similar in the MF outcomes 

(Boardman, 1998). 

 

 

 

4. RESULTS & DISCUSSION: The Spectral Angle Mapper and Mixture Tuned Matched Filtering algorithm 

are applied to the imagery. Both the algorithms are giving a different kind of result. SAM works on the 

matching of the spectral angle between unknown material and reference material while MTMF works with MF 

α 



Figure 5:Comparison of minerals. A. SAM Classified Map. B. MTMF Classified Map 

for mapping of target and MT used for the rejection of the erroneous positives. In these study total, 13 different 

kinds of minerals are identified and mapped on the basis of above-mentioned algorithms. 

 

a. Comparison of Classified Maps on the basis of Minerals: 

These maps are compared on the basis of the presence and absence of different kind of minerals. Total 13 

minerals are mapped by both the algorithm but their presence and absence are slightly different in the maps. 

SAM algorithm less classify the iron minerals (pyrrhotite and limonite) as compared to the MTMF. Area of the 

iron ore belt is mostly covered by the clay minerals in SAM (Figure 5A) while MTMF classified map shows a 

better representation of the iron ore (Figure 5B). In MTMF mixture of iron ore with the clay minerals are very 

less. 

Clay minerals (Kaolinite and Smectite) are abundant in the study area. SAM algorithm has mapped majority of 

the area with clay minerals (Figure 5A). Many minerals of other classes get considered in the clay mineral 

class. MTMF algorithm is very helpful to distinguish the clay minerals from the minerals (Figure 5B). It 

mapped the clay minerals with greater accuracy than the SAM algorithm.  

 

 

 

 

 

 

 

 

 

 



Figure 6: Discrimination of the settlements from mineral body. A. SAM Classified Map. 
B. MTMF Classified Map 

b. Discrimination of Settlement from the mineral zone:  
Settlement zones are made of the rocks found nearby to the region. SAM classified map is not being able to 

discriminate the settlement to the mineral bodies (Figure 6A). Settlement zones are classified as a mineral 

body. Most of the settlement regions are fall under the clay mineral class. While MTMF classified map is not 

like the SAM classified map. Settlements are separate from the mineral bodies but 100% separation is also not 

possible from the MTMF (Figure 6B). MTMF classified map is much better than the SAM classified map. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSION: Minerals are identified from the imagery are clay minerals, iron ore minerals and few other 

minerals. Minerals are mapped using the Spectral Angle Mapper and Mixture Tuned Matched Filtering 

algorithms. Generated mineral maps are compared to know about the suitability of algorithm for the mineral 

identification. MTMF algorithm mapped the minerals with higher accuracy and mixing of one mineral class to 

another mineral class is also not done.  MTMF algorithm gives good results as compared to SAM algorithm. It 

maps the target minerals and rejects the erroneous positive pixels. 
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