
COMPARISON OF CROP DISCRIMINATION USING AVIRIS-NG AND LISS-IV 

DATA OVER HETEROGENEOUS AGRICULTURAL PATCHES 
 Rajsi Kot1, Rahul Nigam2, Alpana Shukla3, Bimal K Bhattacharya4 

1,3M.G. Science Institute, Gujarat University, Ahmedabad-380009, India, 
Email: rajsi.agromet@gmail.com. 

2,4 Space Application Centre (ISRO), Ahmedabad-380015, India, 
Email:rahulnigam@sac.isro.gov.in 

 
KEY WORDS: Sustainable management, Hyperspectral, Crop type, Airborne, AVIRIS-NG 

ABSTRACT 
Crop mapping and discrimination provide an important basis for many agricultural applications such as acreage, 
biomass, yield, crop rotation and soil productivity. Remote sensing data, methods and approaches provide the best 
options for large area agricultural cropland characterization for precision agricultural management practices by 
accurately mapping of crop type and yield indicators. Traditional multispectral broadband sensor data have known 
limitations of sensor saturation and absence of specific narrow bands to target and highlight specific biophysical 
and biochemical characteristics according to crop type. These factors lead to significant uncertainties in the 
discrimination of crop type. Recent advances in hyperspectral remote sensing technology provide the opportunity to 
measure the response of different crop type in terms of morphological and physiological characteristics. The 
specific narrow bands have a capability to perform crop discrimination over homogeneous and heterogeneous 
agricultural areas. The continuous band spectrum from imaging spectroscopy have opened up new avenues in the 
field of classification. In this study, crop discrimination has been carried out using principal component analysis 
and supervised classification techniques such as maximum likelihood classification (MLC) and spectral angle 
mapper (SAM) algorithms. In this study, AVIRIS-NG airborne hyperspectral data acquired on Maddur, Karnataka 
and equivalent multispectral LISS-IV data convolved through three broadband regions (Green: 0.52-0.59 nm, red: 
0.62-0.68 nm, near-infrared: 0.77-0.86 nm) using spectral response function of Resourcesat-2 (RS-2) LISS-IV, 
were used over mixed and heterogeneous agricultural area of Maddur, Karnataka in Berambadi watershed located 
in Kabini river basin. The dominant soil types were red and black soils. Data dimensional reduction has been 
carried out using principal component analysis. In situ crop information were used to perform SAM and MLC-
based classification. Classification accuracy was computed using confusion metrics. SAM classification showed 
classification accuracy of the order of 77.7 % and 42.8% with Kappa coefficient of 0.75 and 0.34 for AVIRIS-NG 
and LISS-IV equivalent, data, respectively. The MLC-based classification showed accuracy of 94.3% and 55.6% 
and Kappa coefficient of 0.93 and 0.46 for AVIRIS-NG and LISS-IV data. It can be concluded that imaging 
hyperspectral narrowband data has the potential to discriminate crops in a mixed and heterogeneous crop cluster 
with higher accuracy as compared to equivalent resolution multi-spectral broadband data. 
 
INTRODUCTION 
The blooming population around the globe and depleting natural resources are constant threats to global food 
security. To ensure the food security and nutritional requirements for rapidly growing population, precise and 
efficient management of agricultural resources is the need of time. Precision agricultural management involves 
many important factors like cropland characterization, crop type discrimination, cropping system management, 
biomass and yield monitoring and quantification of various biophysical and biochemical agricultural parameters. 
Accurate and efficient cropland characterization and crop type discrimination plays key role for many agricultural 
applications such as acreage, biomass, yield, crop rotation and soil productivity. The development of precision 
agricultural practices has fueled the need of advance remote sensing techniques for more accurate and cost effective 
cropland characterization and crop type discrimination (Alchanatis and Cohen, 2011; Thenkabail, 2003). 
Multispectral satellite technologies have been commonly used for various agricultural applications (Ferrato and 
Forsythe, 2013). In a single observation, multispectral sensors generate three to six spectral bands of data that range 
from visible to near infrared (NIR) portion of the electromagnetic spectrum(Ferrato and Forsythe, 2013; Rahul et al, 
2017). These traditional multispectral broadband sensor data have known limitations of sensor saturation 
(Thenkabail, Enclona, Ashton, Legg and Van Der Meer, 2004). These multispectral sensors are unable to provide 
specific agricultural parameters due to absence of specific narrowbands to target and highlight specific biophysical 
and biochemical parameters (Gitelson, 2011; Gitelson, Gritz, & Merzlyak, 2003). All these limitations result into 
significant uncertainties in spectro-biochemical/biophysical modeling of agricultural crops. Agricultural crops are 
significantly better characterized, classified, modeled and mapped using hyperspectral remote sensing data 
(Thenkabail et al., 2012). Hyperspectral sensors commonly collect more than 200 narrow contiguous spectral bands 
that range from the visible to shortwave infrared section of the electromagnetic spectrum (Ferrato and Forsythe, 
2013; Rahul et al., 2017). The continuous availability of hyperspectral imagery, which records hundreds of image 
corresponding to different wavelength channels has opened new avenues in the field of crop type discrimination, 



yield, biomass and area estimation and various biophysical and biochemical parameters estimation (Asner, 1998; 
Thenkabail et al., 2011). The need of targeting specific narrowbands to study the spectral properties of agricultural 
crops is obvious due to the molecular composition of the plant material which reflects, absorbs and emits 
electromagnetic energy at specific wavelengths and with distinct patterns (Mariotto et al., 2013). Many studies have 
been conducted on a wide array of crops and their variables such as crop type discrimination, yield, chlorophyll a 
and b, total chlorophyll, nitrogen content, carotenoid pigments, plant stress, plant moisture, above ground biomass 
and biophysical variables (Boyd and Ripple, 1997; Boyd et al., 1999). Through these studies it has been shown how 
hyperspectral data can provide significant improvements in spectral information content when compared with the 
broadbands in modeling biophysical and yield characterization of agricultural crops (Thenkabail et al., 2000; 
Thenkabail, Smith & De-Pauw, 2002), measuring chlorophyll content of plants (Blackburn and Ferwerda, 2008), 
sensing subtle variations in leaf pigment concentrations (Blackburn and Ferwerda, 2008), extracting biochemical 
variables such as nitrogen and lignin (Houborg and Boegh, 2008), detecting crop moisture variations (Colombo, 
Busetto, Meroni, Rossini, & Panigada, 2011), assessing absolute water content in plant leaves (Jollineau & 
Howarth, 2008), identifying small differences in percent green vegetation cover (Chen, Wang, & Wang, 2008), 
detecting plant stress (Thenkabail, Enclona, Ashton and Van Der Meer, 2004), discriminating land-cover types 
(Thenkabail, Enclona, Ashton, Legg, et al., 2004). These studies have made significant advances in crop type 
discrimination, understanding, modeling, and mapping various biophysical and biochemical quantities of 
agricultural crops (Mariotto et al., 2013).As discussed above, crop area is important for government and economic 
players. The first step for such precision agricultural practices using hyperspectral remote sensing data is the crop 
type discrimination. Crop type discrimination using hyperspectral remote sensing data is a challenging task due to 
the spectral similarities between the crops (Cai et al., 2009). There are many factors which significantly affect crop 
type discrimination like crop physiology, crop phenology, crop rotation, crop calendar and regional aspects. Given 
the above background, the primary objective of this study is establishing a common methodology of crop type 
discrimination using hyperspectral and multispectral remote sensing data and to establish the advantages of 
hyperspectral data over traditional multispectral data. In this study, AVIRIS-NG airborne hyperspectral data and 
Resourcesat-2, LISS-IV equivalent multispectral data is used to perform crop type discrimination (Rahul et al, 
2017). The outcome of this research will help establish the common methodology to perform crop type 
discrimination using hyperspectral and multispectral data. It will also establish the shortfalls of multispectral data 
and advantages of hyperspectral data over multispectral data.  
 
STUDY AREA AND DATA USED 

The study area chosen to conduct the study was Maddur, Chamarajanagar, Karnataka. Maddur was located in 
Gundlupet tehsil of Chamarajanagar district in Karnataka, India. Maddur was situated 16 km away from sub-district 
headquarters Gundlupet and 52 km away from district headquarters Chamarajanagar. Chamarajanagar has moderate 
climate and it falls in the southern dry agro climatic zone of Karnataka. In this district, summers are fairly hot and 
winters are cold. Overall, the average maximum temperature in the district is 34°C and the average minimum 
temperature is 16.4°C. In the morning, relative humidity ranges from 69 to 85 % and in the evening it ranges from 
21 to 70 % (Rahul et al., 2017). Maximum rainy days are observed in Gundlupet with 73 days in the season with 
average rainfall of 731.80 mm yearly (Rahul et al., 2017). Reddish brown forest soil, yellowish grey to greyish 
sandy loam soils and mixed soils are major soil types observed. Major crops are paddy, ragi, sorghum, jower, 
maize, gram, tur, other pulses, sunflower and other oilseeds and vegetables.During the field campaign of AVIRIS-
NG crops like cotton, field beans, horsegram, tomato, turmeric, pulses, maize, beans, cabbage, carrot, banana, chili, 
brinjal sugarcane, beetroot, garlic and potato were observed. In this study for crop discrimination, ground based 
hyperspectral data collected during AVIRIS-NG field campaign and airborne hyperspectral imagery of AVIRIS-NG 
are used. During the field campaign, locations of various crops were recorded using hand help GPS. Region of 
interest were retrieved from these locations for each and every crop (Rahul et al., 2017).  
 
METHODOLOGY 

Pre-processing of AVIRIS-NG data and image generation equivalent to LISS-IV 
Crop locations were collected for various crop type during the in situ data collection campaign conducted during 
AVIRIS-NG flight time. Based on the GPS locations of different crops region of interest were retrieved to perform 
crop type discrimination. To generate LISS-IV equivalent multispectral image relative response function of RS-2 
LISS-IV was applied over AVIRIS-NG hyperspectral data. Application of relative response function resulted in to 
image having three bands equivalent to LISS-IV multispectral data.  
 
Principal Component Analysis, Spectral Angle Mapper and Maximum likelihood classifier 
Hyperspectral imaging can overcome many limitations of multispectral data by distinguishing various spectral 
signature of land use land cover. The hyperspectral data contains contiguous, narrow spectral band that lead to data 
redundancy and high data dimensionality. Hence, hyperspectral data analysis and image processing involves critical 
attention to data compression. Reduction in data redundancy and dimensionality leads to higher classification 



accuracy and reduction in data volume. Principal components analysis (PCA) is a general tool used for reducing 
data dimensionality in remote sensing image processing. The process of PCA can be divided into following three 
steps: 

1. Calculation of the covariance matrix of multi-band images. 
2. Extraction of the eigenvalues and eigenvectors of the matrix. 
3. Transformation of the feature space coordinates using these eigenvectors. 

Here, PCA was applied to AVIRIS-NG hyperspectral data and LISS-IV equivalent multispectral data and based on 
the maximum variance first five principal components (PCs) of AVIRIS-NG data and first two PCs of LISS-IV 
equivalent data were selected. Using ROIs based on the in situ crop locations, supervised classification technique 
spectral angle mapper was appliedover AVIRIS-NG data and LISS-IV equivalent data. SAM defined the spectral 
similarity between two spectra by calculating the angle between the spectra, treating them as vectorsin a space with 
dimensionality equal to the number of bands. SAM compared the angle between the spectrum vector of known 
class and each pixel vector of unknown class in the n-dimension space where n is the number of spectral bands.In 
the classification, the class with the smallest angle was assigned to the corresponding image pixel.The angle α 
between the test spectrum  and the reference r is calculated as 
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Where, 
nb= Number of bands in the image 
t= Test Spectrum 
r= Reference Spectrum 
α= Spectral Angle 
 
In this study, Single threshold value, 0.1 radian was given to all the classes. The maximum acceptable angle 
between the test spectrum vector and the pixel vector was 0.1 radian. Another supervised classification method 
maximum likelihood classification (MLC) was used in this study for crop discrimination. This technique was based 
on the conditional probabilities and these conditional probabilities were used to develop the maximum likelihood 
decision rule.The flow of methodology is given in Figure 1. Post classification accuracy was computed using 
statistical technique confusion matrix. 

 

Figure1. Flow Of Methodology For Classification 

 
RESULTS 

Crop type discrimination was performed using aforementioned techniques where PCA was used to reduce data 
redundancy and dimensionality. PCA was applied to AVIRIS-NG hyperspectral data and LISS-IV equivalent 



multispectral data. First five and two PCs from AVIRIS-NG and LISS-IV data respectively were used for crop 
classification over the same region. The spatial variability of selected PCs for AVIRIS-NG and LISS-IV are shown 
in Figure 2. The five PCs from AVIRIS-NG showed better variability as compared to LISS-IV. Based on the 
ground observation points, ROIs were extracted to apply in spectral angle mapper classification algorithm. SAM 
algorithm determines the spectral similarity between two spectra by calculating the angle between them as vectors 
in a space with dimensionality equal to the number of bands (n). SAM compares the angle between the reference 
spectrum and test spectrum in n-dimension space. Smaller angle represents closer matches to the reference 
spectrum. Crop discrimination was successfully achieved through spectral angle mapper over AVIRIS-NG data. 
Figure 3 showed classified image of AVIRIS-NG data where the field crops were discriminated based on the 
ground truth ROIs. However, crop discrimination in LISS-IV equivalent multispectral data in Figure 4 indicated 
misclassification due to the absence of specific narrow bands to target and highlight specific biophysical and 
biochemical characteristics according to the crop type. 

 

 

Figure 3. Crop classification using AVIRIS-NG data using spectral angle mapper algorithm 

 

Figure 2. Principal Components Analysis Using AVIRIS-NG And LISS-IV Data 



 

Figure 4. Crop Classification Using LISS-IV Equivalent Spectral Data Using Spectral Angle Mapper Algorithm 

 

 

 

 

 

 

 

 

Figure 5. Crop Classification Using AVIRIS-NG Data Using Maximum Likelihood Classification 



 
Maximum likelihood classification technique was also applied over AVIRIS-NG hyperspectral data and LISS-IV 
equivalent multispectral data for crop discrimination. This supervised classification technique is based on the 
conditional probabilities and these conditional probabilities are used to develop the maximum likelihood decision 
rule. Figure 5 represents successful crop discrimination achieved by applying MLC over AVIRIS-NG hyperspectral 
data. Whereas, figure 6 shows misclassification of crops due to loss of spectral information in LISS-IV equivalent 
multispectral data. The spectral resolution was the main factor that distinguishes hyperspectral imagery from 
multispectral imagery. Hyperspectral sensors contained bands with narrow wavelengths while multispectral sensors 
contained bands with broad wavelengths. The advantage of using hyperspectral data over multispectral data is the 
ability to define crop biophysical and biochemical parameters with a higher spectral resolution. Successful 
application of ground based crop and soil ROI over AVIRIS-NG hyperspectral data for crop discrimination proved 
strength of ground data. Major advantage of hyperspectral data is inferred that efficient crop discrimination is 
achieved over AVIRIS-NG hyperspectral data. MLC resulted in higher classification accuracy as compared to 
spectral angle mapper algorithm for both the data of AVIRIS-NG hyperspectral data and LISS-IV equivalent 
multispectral data. Using both the supervised classification methods higher classification accuracy was achieved for 
AVIRIS-NG hyperspectral data as compared to LISS-IV equivalent multispectral data.   Classification accuracy 
was estimated by computing confusion matrix. For AVIRIS-NG hyperspectral data, overall classification accuracy 
was 77.7 % and kappa coefficient was 0.75 and for LISS-IV equivalent multispectral data overall classification 
accuracy was 42.8% and kappa coefficient was 0.34. 

DISCUSSION 

This study examined the performance of hyperspectral and multispectral remote sensing data using common 
methodology where three techniques (1) principal component analysis, spectral angle mapper and maximum 
likelihood classifier were implemented to perform crop type discrimination. PCA played two key roles in 
hyperspectral data analysis for this study. Best wavebands to perform crop classification were selected and 
redundant bands were removed using PCA. Through this process, we were left with best bands, able to eliminate 
redundant bands and helped to reduce the data volume. PCA transformed original hyperspectral data into a new 
coordinate system, which helped to find the information in the original intercorrelated variables into a few 
uncorrelated variables called principal components (PCs). Typically, first few PCs explained overwhelming 
proportion of variability (explained by eigenvalue) in data.  Adjacent hyperspectral wavebands showed noise, 
saturation (explained by eigenvalue) and redundancy of the data. The original high dimension data then was 
transformed to a few bands that contained most of the information in the original bands. The importance of the 
hyperspectral wavebands in each PC was determined based on the magnitude of eigenvectors. Results typically 
demonstrated higher eigenvector of first few bands. Therefore, based on the analysis and variability of the data it 

 

 

 

 

 

 

Figure 6. Crop Classification Using LISS-IV Equivalent Spectral Data Using Maximum Likelihood Classification 



was conferred that higher the eigenvector, higher the importance of the band. Thus, PCA helped in determining 
wavebands that had the greater influence in terms of variability and eigenvectors and redundant data in both 
hyperspectral and multispectral data. As shown in fig. 2, PCs of hyperspectral data showed the greater variability 
which is desirable to achieve crop type discrimination efficiently whereas PCs of multispectral data showed lesser 
variability which decreases the classification accuracy. Spectral angle mapper algorithm was used for crop type 
discrimination. Ground based crop ROIs were used as an input training data set.In SAM algorithm, each pixel was 
considered as an N-dimensional vector. Therefore, each vector defined a set of angles with the coordinates 
representing the band or features. In this algorithm, the angular distance between pixels was considered as the 
measure of distance. Each pixel was assigned to the class which was closest to it based on the angular 
distance.SAM was successfully applied due to its ability to handle high dimensional data and large number of 
pixels in training data set as it reduced the dimensionality to the axes. The main advantage of SAM was inferred 
that due to its insensitivity to the magnitude of the pixel vectors, only the angular distance between vectors were 
used in establishing crop classification. Therefore, it holds a special significance in classifying vegetation. As 
shown in fig. 3, SAM successfully discriminated crop type based on ground data ROIs. In case of multispectral 
LISS-IV data (fig. 4) significant amount of misclassification was observed due to the absence of specific narrow 
bands to target and highlight specific biophysical and biochemical characteristics according to crop type. Another 
supervised classification technique maximum likelihood classifier was applied over hyperspectral and multispectral 
data. This classifier performed based on the Bayes’ classification rule which is based on the conditional 
probabilities of the pixel vectors. MLC estimates the conditional probabilities using training data and these 
conditional probabilities are used to develop the maximum likelihood decision rule. MLC resulted in 
higheraccuracy of classification than SAM classifier due to multivariate normal data distribution and adequate 
numbers of training pixels.Post classification, accuracy assessment was carried out by using confusion matrix. For 
AVIRIS-NG hyperspectral data, overall classification accuracy was 77.7 % and kappa coefficient was 0.75 and for 
LISS-IV equivalent multispectral data overall classification accuracy was 42.8% and kappa coefficient 0.34 
achieved by spectral angle mapper classifier.With MLC, overall classification accuracy 94.3% and kappa 
coefficient 0.93 for AVIRIS-NG data and for MLC overall classification accuracy is 55.6% and kappa coefficient 
0.46 is achieved.  

CONCLUSION 

In general, hyperspectral sensors provide significantly better classification results than multispectral sensors but 
their classification performance depends on other factors such as signal to noise ratio and adequate feature 
selection. The most important broad spectral intervals for crop type discrimination using imaging spectrometers are 
the NIR (760-900 nm), SWIR (1500-1750 nm), red (66-700 nm) and green (500-600 nm). A number of focused 
hyperspectral narrowbands help distinctly separate crop type based on their biophysical and biochemical properties. 
In this study, multispectral and hyperspectral data was used to discriminate crop type in heterogeneous agricultural 
area. PCA was utilized to establish data variability and reduce data redundancy. Supervised classification technique 
SAM algorithm was applied over AVIRIS-NG hyperspectral data and LISS-IV multispectral data. Better 
classification accuracy was achieved for AVIRIS-NG data. Narrow contiguous wavebands, specific wavebands 
corresponding to specific pin-pointing parameters for crops and continuous coverage of EM spectrum, all these 
numerous factors offered by hyperspectral data are of great advantage when compared with possibilities offered by 
broadband multispectral data.  
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