
TROPICAL DRY FOREST DEGRADATION ESTIMATION AT LOCAL SCALE WITH 

UAV IMAGES 

Fernando Rocha Alvarez
1
, Yan Gao

1
 y Jaime Paneque-Gálvez

1 

1
 Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Antigua 

Carretera a Pátzcuaro No 8701, Col. Ex-Hacienda de San José de La Huerta, Morelia 58190, Michoacán, México, 

email: frocha@pmip.unam.mx 

 

KEYWORDS: Forest disturbance, forest attributes 

 

ABSTRACT: Forest degradation is a dynamic process, and its accurate mapping and detection has been limited by 

the lack of spatial and temporal resolution of conventional remote sensing, especially in tropical dry forests (TDF). 

The objective of this work is to assess UAV images for mapping and quantifying forest degradation of the TDF at 

local scale. Firstly, the accuracy of UAV images to estimate forest attributes (canopy height, canopy cover, biomass 

and frequency of individuals) is evaluated. These attributes are then integrated to estimate the status of forest 

degradation. UAV images were obtained for both rainy and dry season, also field measurements at 22 plots. UAV 

images were processed by photogrammetry of motion structure, and a canopy height model (CHM) and a mosaic in 

RGB are created. The CHM calculates canopy height, in combination with the RGB mosaic, the canopy cover was 

delimitated through an object-based image analysis. For the estimation of biomass and frequency of individuals, 

multiple linear regression models are developed, which allows the attributes data from field to be related to the 

height and canopy coverage estimated by UAV images. Forest degradation states are estimated using a relative 

degradation index. The preliminary results show that the processing of the UAV images has obtained a good 

accuracy for the average and maximum canopy height with an error of 0.4 - 3.1 m, respectively. The delimitation of 

the canopy cover has an overall accuracy of 95%. Forest attributes from UAV images are expected to continue to be 

calculated reliably, compared to those at the ground level. 

 

 

1. INTRODUCTION 

Forest degradation is defined as the loss of some particular attribute, function or service due to disturbances to its 

composition, structure, function of ecosystems, interaction between species or the physical environment (Ghazoul 

et al. 2015). Forest degradation contributes to biodiversity loss, acceleration of climate change, and loss of a 

multitude of benefits, which affects negatively the livelihoods of marginalized populations that depend directly on 

forests (Barlow et al., 2007; Houghton et al., 2012; Angelsen and Wunder 2003). Particularly, the tropical dry forest 

(TDF) is important for carbon supply, and it represents one of the ecosystems with great diversity and endemism 

worldwide, nevertheless it is one of the most threatened and yet less studied ecosystems (Sánchez-Azofeifa et al. 

2005). 

 

Recently there has been a particular interest in assessing forest degradation (Olander et al., 2008; DeFries et al., 

2007). However, this is difficult because it is a continuous process and implies transformations (degradation / 

regeneration) in the forests that remain as forests. Putz and Redford (2010) and Goetz et al., (2014) recommended 

to estimate degradation at different levels through the establishment of thresholds. Forest degradation implies 

transformations in the forest structure that can only be detected at a local scale and that conventional remote sensing 

has not been able to estimate it accurately due to the lack of spatial and temporal resolutions (Herold et al., 2011). 

Data with much higher spatial and temporal resolutions are needed to map the subtle differences in the change of 

forest structures and this need is even greater in TDF, because its phenology varies seasonally (Mertz et al., 2012; 

Sánchez-Azofeifa et al., 2005; Gibbs et al., 2007). UAV images represent a data source with detailed and frequent 

low-cost observations at local scales (Paneque-Gálvez et al., 2014; Zahawi et al., 2015), which makes them 

potentially useful to estimate forest degradation in TDF, and benefit the calculation of forest degradation at regional 

and even national scales. 

 

The UAV images offer high-resolution ortho-mosaics, 3D point cloud and digital surface models through 

photogrammetry and motion structure processes. Its main utility has been focused on the estimation of structural 

characteristics of 3D vegetation (Dandois and Ellis 2010). Some forest attributes such as canopy height, canopy 

cover, and biomass estimation have already been estimated from UAV images (Dandois and Ellis 2013, Ota et al., 

2015, Torres-Sánchez et al., 2015). However, it is necessary to continue to estimate these forest attributes for 

different forest types in different disturbance and phenological conditions. 

 

Given the potential of UAV images in extraction of key forest attribute variables, and the difficulties in mapping 

forest degradation in the TDF, this study hypothesizes that UAV images contribute significantly to improve the 
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mapping and estimation of forest degradation. This study focuses on assessing the potential of UAV images to map 

and quantify forest degradation of TDF at the local scale. The objectives are: (1) to assess the usefulness of UAV 

images in estimating forest attributes in the TDF at the local level; and (2) to map and quantify forest degradation 

through the integration of forest attributes through an Index of relative degradation. For this, a case study is carried 

out in the Sierra Gorda Biosphere Reserve of Guanajuato, one of the most biodiverse and protected natural areas of 

the country (CONANP 2013). 

 

2. METHODOLOGY 

 

Figure 1 is a flowchart showing the methodology of this work, including the acquisition of UAV images and data 

from in-situ; data processing to estimate and validate forest attributes and the integration of data attributes to 

determine forest degradation at local scale.  

 

 

Figure 1. Methodological flowchart. The methodology includes three main steps. The first step, in blue color, is the 

acquisition of the data in this analysis. Consequently, the boxes in green color, constitutes the particular processing 

of the data. Finally, the third step is the integration of the processing data to obtain the main result of the analysis. 

2.1 Study area 

The study area is located in the central part of the Sierra Gorda Biosphere Reserve of Guanajuato, municipality of 

Victoria, Guanajuato, Mexico (Figure 2). This area is home to a high diversity of TDF species. In addition, it is the 

habitat of species of felines distinguished in the reserve, among which is Puma yagouaroundi, Lynx rufus and Puma 

concolor (Charre-Medellín et al., 2012). The main cause of degradation in this area is cattle grazing and ranching. 

This area was chosen because it is relatively homogeneous in terms of natural ecosystems and land use. 

 



 

Figure 2. The study area. The upper two maps indicating the location of the biosphere reserve in Mexico. The 

lower map is a zoom of the biosphere reserve, where the red box comprises the study area. The map includes 

geographic features details of the study area. 

 

2.2 Field work: Forest inventory and UAV images acquisition 

UAV flights and forest inventory for 22 sites were carried out, which were defined based on an equation that 

calculates a total number of samples, considering a confidence interval of 80% and a margin of error of 10% (Burt 

and Barber, 1996). The distribution of these sites was defined by stratified random sampling, according to 3 

categories of percentage of tree covers (10-40%, 40-70% and 70-100%) (Rocha 2015) in order to obtain greater 

heterogeneity in the degradation levels of the selected sites (Figure 3). 

 



 

Figure 3. Distribution of the study plots. The map shows the limit of tropical dry forest (TDF) and the location 

of the plots through the different categories of tree cover taken into account in this work. 

 

For each plot, UAV images were obtained by flights at 100 meters’ height for both rainy and dry seasons, covering 

areas from 1 to 8 hectares. For each of the sites surveyed, 4 ground control points distributed around each plot were 

collected to improve the spatial reference of the images. Forest attributes data were obtained through inventory at 

circular plots of 400 m² each for variables including tree height, diameter at breast height (DBH, 1.3m) > 7.5 cm, 

common species name and percentage of tree cover. Forest inventory data were used to calibrate and validate forest 

attributes obtained from UAV images. 

2.3 Processing of UAV Images 

UAV images were processed by using Agisoft PhotoScan Professional software version 1.2.6 to generate 3D spatial 

data such as dense point clouds, digital surface models and ortho-mosaics. 

2.4 Estimation of canopy height  

The canopy height estimation is based on a canopy height model (CHM), generated through the subtraction of 

digital terrain model (DTM) from digital surface model (DSM). The DSM for each site is obtained from the 

processing of UAV images for the rainy season. The DTMs in open cover canopy plots are generated from the 

extraction of terrain points for rainy season cloud points. The DTMs for closed cover canopy plots are generated 

based on the processing of UAV images for the dry season because the lack of leafs allow the detection of point 

cloud at ground level due to the SfM algorithms are not able to detect the surface of canopy cover (Dandois and 

Ellis 2013). The reliability of the CHM is determined from the comparison of statistics of the estimated field 

canopy heights against statistical heights obtained by CHM through a linear regression model. Statistics obtained 

from CHM include maximum, minimum, mean, median and deciles. 

2.5 Canopy cover classification 

Areas of canopy cover was obtained by an object-based classification of UAV images. The images were first 

segmented using a stable mean-shift algorithm available in the Orfeo software (Michel et al. 2015). Mean-shift is an 

algorithm of grouping pixels of an image in regions of the same characteristics, in this case the tones of RGB 



mosaic. This technique does not require preliminary knowledge of the number and shape of regions and has 

presented consistent results in high resolution images (Comaniciu and Meer 2002, Michel et al. 2015). 

Subsequently, for each segment, the mean value of CHM is extracted, a threshold classifier based on this data is 

applied, where segments with a mean canopy height greater than 3 meters are classified as canopy cover. The 

resultant canopy cover is compared to the canopy cover by photointerpretation. The comparison is carried out by 

means of a confusion matrix and the overall accuracy of the canopy cover classification was evaluated.  

2.6 Estimation of biomass and frequency of individuals 

Biomass and the frequency of individuals for the 24 plots were calculated from the field measurements. The 

biomass was calculated by an allometric equation established for TDF (Martinez-Yrizar et al. 1992). A multiple 

linear regression model is performed to estimate the biomass and frequency of individuals at each site. This model 

considers the biomass and frequency of individuals, calculated from the field data, as dependent variables by 

explanatory variables of CHM (maximum, minimum, mean, median and deciles) and the percentage of canopy 

cover for each plot. The equation regression model is used to estimate beyond the plots these variables based on the 

best explanatory variables. 

2.7 Forest degradation estimation  

To estimate the degradation of TDF, a normalized index of relative degradation (NIRD) was applied (Jardel-Peláez 

et al., 2013). This index integrates forest attributes calculated from UAV images and field data (canopy height, 

canopy cover, biomass and frequency of individuals) and then to classify them into different states of forest 

degradation. 

 

The first step of the index consists of the normalization of the considered variables (equation 1). 

 

𝑉𝑒 =
𝑥− 𝑥̅

𝑆𝐷
                                              (1) 

 

Where Ve is the normalized variable, x is the value of the variable for each of the sites, X is the mean of the variable 

for all study sites and SD is the standard deviation of all study sites.  An average of these normalized variables is 

then calculated by equation 2. 

 

𝑁𝐼𝑅𝐷 =  
𝐴𝑒+𝐵𝑒+𝐶𝑒+𝐷𝑒

𝑛
                       (2) 

 

Where NIRD is the normalized index of relative degradation, Ae, Be, Ce and De correspond to each of the 

normalized variables and n is the number of variables. The state of forest degradation is estimated according to the 

classified values of the degradation indices (Table 1). 

 

Table 1. Classification of the INDR (Jardel-Peláez et al. 2013). The index comprises four categories 

determinate from its resultant value. The categories with more positives values correspond to the less degraded. 

Four finally categories of forest degradation are estimated.  

 

INDR Value Degradation level 

1 > 1 Low level Degradation 

2 1 - 0 Moderate Degradation 

3 0 - (-1) High level Degradation 

4 < (-1) Very high level Degradation 

 

3. PRELIMINARY RESULTS 

Based on the processing results of UAV images, only for 3 and 4 study plots, the mean and maximum canopy 

height within the plots have so far been accurately determined, with recorded errors ranging from 0.4 to 3.1 m, 

respectively (Figure 4).  



 

Figure 4. Canopy height model (CHM). The left image shows the distribution of canopy height at window level. 

The right image represents the canopy height within the plot 3 and the limit of canopy cover taken into account to 

obtain statistics of canopy height at plot level. 

 

The delimitation of canopy cover has been estimated with an overall accuracy of 95% and with errors of omission 

and commission of 1 and 12% respectively (Figure 5). 

 

 

Figure 5. Delimitation of canopy cover. The left image represents the RGB orthomosaic of forest and its 

delimitation of canopy cover at window level. The right image shows the validation parameters for the delimitation 

of canopy cover at plot level.  

From the field data, the degradation index has been calculated, where the categories with the greatest degradation 

have a lower forest structure, it is expected that the estimation of the forest attributes is reliable, compared to those 

estimated at the ground level. 
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