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ABSTRACT: Studies have proven that several local environmental factors (such as land use, land cover, and 

solar radiation) can influence the daytime land surface temperature (LST). Therefore, modulating these key factors 

can help mitigate urban heat island (UHI) effects. However, other factors from neighboring areas rather than the 

local area influence the local LST. To identify the factors from neighboring areas, we must answer two research 

questions: (1) Does the LST of an area influence those of its neighboring areas? (2) Is the LST of an area influenced 

by the environmental factors of neighboring areas? Therefore, the purpose of this study was to explore the 

relationship between LST and land surface environment by using spatial autoregressive models including the spatial 

lag model and spatial error model. Taichung City, the third-largest city in Taiwan, was selected as the study area. 

The predisposing environmental factors that could influence LST were retrieved by investigating data on Landsat 

series thermal imagery and land use. Factors that were significant during different periods from 2010 to 2015 were 

selected to predict the cooling effects after increasing green cover in specific areas: Maple Garden, the National 

Taichung Theater, People’s Square, the IKEA green roof, Green Park Road, and other large-scale green-space 

planning projects. Future applications include optimizing green-space locations to reduce daytime UHI effects.  

1. INTRODUCTION 

Because of industrial revolution and urbanization, built-up areas have expanded, which has resulted in the 

reduction of green areas. Impermeable pavement and cement buildings prevent land from quick heat dissipation, 

which results in the urban heat island (UHI) effect. 

Taichung City is the second-largest city in Taiwan because of its role as a traffic hub, and its urban areas are 

rapidly expanding. In recent years, Taichung City Government has approved many green land planning measures. 

mailto:Hsiao.19921026@gmail.com
mailto:ysshiu@fcu.edu.tw
mailto:rylee@fcu.edu.tw


Therefore, exploring Taichung City’s high-density-area land surface temperature (LST) and UHI effect has become 

crucial. Accordingly, we used the Landsat series of satellite images to monitor the UHI effect. 

According to a review of the literature, many causes of the high-temperature UHI effect have been proposed. 

Howard proposed the UHI effect in 1833. In urban areas, numerous buildings, impermeable pavement, and a lack of 

green land lead to the UHI effect. Cement buildings usually absorb substantial solar radiation during the daytime 

and increase the urban temperature. In the nighttime, the impervious pavement cannot absorb the solar radiation, 

and thus, the internal temperature cannot be reduced. Recently constructed high-rise buildings feature geometric 

characteristics, numerous glass curtains, and cement, which increase atmospheric radiation and alter the surface 

reflection path. Additionally, high-rise buildings cause wind resistance and prevent airflow from completing parallel 

convection, which allows urban areas to easily retain high temperatures (Chang, 2010). 

Numerous studies have confirmed that green land can effectively reduce LST and the UHI effect because green 

land can absorb solar radiation and increase heat evapotranspiration and offer shade while reducing urban 

temperatures. This is called the urban cold island effect. Urban green land can effectively improve the city 

environment by adjusting its microclimate, improving air quality, reducing the UHI effect, reducing the impact of 

environmental developments, and repairing the ecological chain (Chang, 2010). For example, New York’s Central 

Park is known as the “lungs of New York City.” 

From the literature, we classified many factors that affect the urban environment (Chang, 2010; Landsberg, 

1981; C.-M. Lin, 2010; H.-T. Lin, Kuo, Lee, Chen, &Chen, 2001; Lu, 2008), including excessive energy use, 

emissions, green land reduction, and suspended particulates, and we assumed that the key factors influencing the 

UHI in the city are vegetation, water, buildings, average solar radiation, and sky view factor (Bottyn & Unger, 2003; 

Chun & Guldmann, 2014; Landsberg, 1981). 

In this study, we selected Taichung City as the study area; Landsat series images were used as the data sources. 

We used spatial and nonspatial regression models, including the ordinary least squares (OLS) estimator, spatial error 

model (SEM), and spatial lag model (SLM) to explore the relationship between LST and the six key factors. 

Landsat 4-5 TM in December 2010 and Landsat 8 OLI in December 2015 were used to retrieve the LST and 

normalized difference vegetation index (NDVI)(Anselin, 2013; Song, Du, Feng, & Guo, 2014). Regression models 

built using the data of 2010 and 2015 were used to predict the future LST after green land planning. 

2. DATA PROCESSING AND RESEARCH METHODS 

2.1 DATA PROCESSING 

2.1.1 Building 

We used a topographic map to digitize street maps of buildings and obtain information on buildings (e.g., height, 

area, and floors). The building ground floor area (BGFA) is the sum of the ground floor areas of all buildings in a 

given unit area (cell) and equals the total building rooftop area given by (Chun & Guldmann, 2014): 

BGFA = ∑ 𝑎𝑖
𝑛

𝑖=1
, 

where ai is building i’s ground floor area in a given cell and n is the number of building footprints. 

2.1.2 Water 

Water can reduce LSTs, and it exists in liquid, solid, gaseous, and other forms. Because water is highly correlated 

with NDVI, this study separated the NDVI and water factors. An NDVI value approaching −1 can be used to 



identify water and to represent impermeable pavement. The NDVI is defined as follows (Xu, 2006): 

NDVI =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
, 

where NIR is a near infrared ray with a wavelength of 0.86 μm. 

2.1.3 NDVI 

NDVI has been used in many studies on UHI effects because plants and heat radiation have a cool island effect. 

NDVI ranges from 1 to −1 and usually signifies vegetation cover. An NDVI value close to 1 signifies intensive 

vegetation coverage, whereas a value closer to 0 signifies bare land. The NDVI is defined as follows (Carlson & 

Ripley, 1997): 

NDVI =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
, 

where NIR is a near infrared ray with a wavelength of 0.86 μm. 

2.1.4 Sky view factor 

Many studies have proven that city geometry has a microclimate effect on the environment. Notably, they have 

determined that buildings affect sky shine and result in the city being unable to cool at night, thereby resulting in a 

UHI effect (Oke, 1981). Sky view factor (SVF) is categorized into three types: ground SVF (GSVF), roof SVF 

(RSVF), and total SVF (TSVF). Different locations, shapes, and sizes of buildings result in different SVFs. The 

SVF is defined as follows (Wenjing, Yanuar, & Perry, 2004): 

𝑇𝑆𝑉𝐹 = ∑ 𝐺𝑆𝑉𝐹𝑖

i=1→Ng

+ ∑ 𝑅𝑆𝑉𝐹𝑖 ,

i=1→Nr

 

2.1.5 Average area solar radiation  

The total solar radiation (TSR) and average area solar radiation (AASR) are defined as follows: 

TSR = ∑ 𝑆𝑅𝑞

𝑃

𝑞=1

 

 

AASR =
𝑇𝑆𝑅

𝑃
× 𝐴, 

where SR position is the view solar radiation, p is the number of observation points in a given cell grid, and A is the 

area of the cell grid. 

 

2.1.6 LST 

T = 𝐾_2/𝑙𝑛 (
𝐾2

𝐿𝜆

+ 1) 

𝐿𝜆 = 𝐺𝑟𝑒𝑠𝑐𝑎𝑙𝑒 × 𝐷𝑁 + 𝐵𝑟𝑒𝑠𝑐𝑎𝑙𝑒, 

where T denotes the LST and 𝐿𝜆is the spectral radiance at the sensor’s aperture; K2 = 1260.56 K, K1 = 607.76 

(W·m2·sr·μm), Sr = steradian (SI unit of solid angle), Grescale = 0.055158 W·m2·sr·μm/DN, and Brescale = 1.2378 

(W·m2·sr·μm). 



𝑇𝜀 = 𝑇/ {1 + [
𝜆 × 𝑇

𝜌
× ln(𝜀)]}, 

where λ is the wavelength of emitted radiance (11.5µm), 𝜌 is 1.438 × 10−2 m K, andεis the emissivity. 

2.2 RESEARCH METHODS 

2.2.1 OLS 

The OLS model was generated, and we assumed that the spatial autocorrelation problem is not considered. The 

formula is expressed as follows: 

Y = Xβ + ε，ε is error. 

We used Moran’s I test to validate the spatial autocorrelation in OLS and determined whether the data in space are 

distributed randomly or are correlated. 

Y=Xβ +Wε+u. 

2.2.2 SEM 

The SEM is suitable for the existence of spatial autocorrelation. It produced errors in the original model. The 

formula is expressed as follows: 

Y = Xβ + Wε + u, 

where W denotes the spatial weights matrix and ε is the error 

2.2.3 SLM 

The SLM is derived from spatial proximity and is so called owing to the analogy with the time lag in time series 

models. The formula is expressed as follows: 

y =ρW y + Xβ + ε, 

where W denotes the spatial weights matrix and ε is the error 

 

2.2.4 Moran’s I 

Moran’s I test coefficient values lie between 1 and −1. Values from 1 to 0 represent a positive correlation, indicating 

a cluster distribution; values from 0 to −1 represent a negative correlation, indicating dispersion. The average value 

indicates spatial distribution. Values close to 0 indicate a random state or irregularity in the spatial distribution 

(Chen, 2013). 

Ie =
−1

𝑛 − 1
, 

where n is number of samples and Ie is the expected value. 

2.2.5 Test of goodness of fit 

The R2 between SLM and SEM cannot be compared because both models exhibit spatial correlation. Therefore, we 

used log likelihood (LIK) and the Akaike information criterion (AIC) to test goodness of fit. Higher LIK and lower 



AIC values represented more effective models (Ai, 2005; Lee & Chen, 2010). 

2.3 SUMMARY 

Data from the aforementioned research materials were obtained using ArcGIS and GeoDa spatial statistics software, 

and the spatial regression coefficients were obtained using GeoDa. Table 1 provides information for each factor. 

Table 1 Independent and depend variables in the regression models. 

Y LST Land surface temperature 

X1 Building 

X2 
Average area solar radiation ( AASR ) 

X3 
Sky view factor (SVF) 

X4 
Normalized difference vegetation index；NDVI 

X5 Water* 

*Water and NDVI collinearity are too high to be considered, so we remove this factor in the regression models. 

 

3 RESULTS 

3.1 Study area and confirmation 

Taichung City is the second-largest city in Taiwan and is a traffic hub. The urban areas of Taichung City have 

dramatically expanded over the past two decades. In recent years, Taichung City Government has proposed 

numerous green land planning measures. Therefore, exploring Taichung City’s high-density-area LST and UHI 

effect has become crucial. The installation of new parks between 2015 and 2017 is expected to reduce the 

LST.( Figure 1 ) 

 

Figure1. Study area and testing area in Central Taiwan. 

3.2 Results 

We used three spatial regression models to explore the relationship between LST and environmental factors. 

Because OLS does not consider spatial lag and spatial error, space autocorrelation and other problems are evident 



(Table2). The R2 was stabilized after 2010. Additionally Moran’s I indicated spatial autocorrelation in 2010 and 

2015; however, the regression error was gradually distributed by the clustering state. 

Table 2 The R2 and Moran’s I with different grid size.  

Year Grid size R2 Moran’s I 

2010 60m × 60m 0.495 0.5376 

 120m × 120m 0.618 0.4616 

 240m × 240m 0.669 0.3543 

 480m × 480m 0.682 0.3457 

2015 60m × 60m 0.348 0.6337 

 120m × 120m 0.473 0.5266 

 240m × 120m 0.398 0.3662 

 480m × 480m 0.587 0.2699 

 

Comparing SEM and SLM requires applying the test of goodness of fit. When LIK and AIC are used in the 

goodness-of-fit test, the model with the highest LIK and lowest AIC is the most effective. SEM and SLM involve 

the same method, for example, comparing SEM and SLM to determine whether the 60 m × 60 m and 120 m × 120 

m grids were more favorable in 2015. The 240 m × 120 and 480 m × 480 m grids were more favorable in 2010, but 

their LIK and AIC values were closer in 2015, which facilitates the prediction of the 2017 values (Table3). 

 Table 3 LIK and AIC index with different models and data in different years. 

This study explored the effects of environmental factors on the LSTs of four grids. We selected the SEM to 

predict the LST in January 2017. Green cover and LST exhibited a negative correlation, as shown in Tables 3 and 

4.When the temperature gradually increases, the green cover gradually decreases. The building and the LST 

exhibited a positive correlation. Additionally, in recent years, buildings have used geometric designs and glass 

curtains. The SEM is the more effective model in 2015, as shown in Tables 4 and 5. Therefore, we assessed the 

accuracy of January 2017 LST predictions. Additionally, we used the models generated using the data in 2010 to 

predict the LST in January 2017 and compared the accuracy of the different results. 

 

 

Model Year Index 
Grid size 

60m×60m 120m×120m 240m×240m 480m×480m 

SEM 2010 LIK -22647 -6037 -1454 -286 

  
AIC 45304 12083 2917 581 

 
2015 LIK -14687 -4697 -1615 -303 

  
AIC 29384 9404 3240 616 

SLM 2010 LIK -23326 -6364 -1549 -313 

  
AIC 46665 12741 3110 638 

 
2015 LIK -18116 -5442 -1616 -309 

  
AIC 36245 10896 32445 629 



Table 4 The results of SEM with the data in 2010. 

Variable   Grid size 

 60m×60m 120m×120m 240m×240m 480m×480m 

Variable   Coefficient z-value Coefficient z-value Coefficient z-value Coefficient z-value 

CONSTANT 21.6348 256.3170 19.3860 131.6880 16.7706 58.8055 14.2743 24.5593 

BGFA 3.414×10-5 5.0875 4.150×10-5 8.8806 2.491×10-5 8.2269 1.445×10-5 7.9883 

ASR 0.0028 23.4798 0.0087 22.4499 0.0205 15.3693 0.0164 4.9359 

SVF 0.3646 3.4455 0.7117 3.0511 -1.0671 -1.7218 2.9835 2.0561 

NDVI -7.7319 -118.6620 -10.0017 -80.9356 -11.1460 -44.6665 -11.2905 -24.7014 

LAMBDA 0.8669 221.6610 0.8287 92.8848 0.7028 29.2408 0.6937 15.0945 

R 0.8011 
 

0.8011 
 

0.7782 
 

0.7836 
 

LIK -22646.8664 
 

-6036.6281 
 

-1453.5859 
 

-285.6163 
 

AIC 45303.7000 
 

12083.3000 
 

2917.1700 
 

581.2330 
 

SC 45343.8000 
 

12117.1000 
 

2944.5200 
 

602.0280 
 

 

Table 5 The results of SEM with the data in 2015. 

 

We used the SEM models from the data in 2010 and 2015 to predict the LST in all study areas in 2017. With 

the data in 2010, the results show a maximum error of approximately −6.7°C and a minimum error of 

approximately −5.8°C; while with the data in 2015, the results show a maximum error of approximately 3.1°and a 

minimum error of approximately 1.3°C (Table 6). 

 

 

Variable   Grid size 

 
60m×60m 120m×120m 24m×240m 480m×480m 

 
Coefficient  z-value  Coefficient  z-value  Coefficient  z-value  Coefficient  z-value  

CONSTANT 29.8865 393.0030 27.4097 206.0250 24.3735 75.7121 21.9097 39.0497 

BGFA 8.501×10-5 15.8370 7.575×10-5 18.3435 5.772×10-5 17.0750 1.168×10-5 6.0073 

ASR 0.0017 21.8727 0.0058 19.6406 0.0126 9.3776 0.0199 6.4745 

SVF 0.2820 3.6787 1.8586 9.5284 1.0640 1.5553 2.7768 1.9497 

NDVI -4.4339 -43.2488 -7.8439 -35.3078 -1.2578 -2.5447 -13.1110 -12.4996 

LAMBDA 0.9402 409.9600 0.8999 140.0440 0.7858 39.3633 0.6272 11.9228 

R 0.8584 0.8097 0.6438 0.686 

LIK -14686.8656 -4696.9315 -1615.0600  -302.8941 

AIC 29383.7000 9403.8600 3240.1200 615.7880 

SC 29423.4000 9437.3300 3267.2100 636.3790 



Table 6 The validation results of SEM models with the data in 2010 and 2015 for all study area in 2017. 

Year LST and Prediction Error 
Grid size 

60m×60m 120m×120m 240m×240m 480m×480m 

SEM model from  Real average LST 26.997 27.007 27.032 27.045 

the data in 2010 Prediction LST 21.201 20.657 20.466 20.319 

 
Error -5.797 -6.350 -6.566 -6.726 

SEM model from  Real average LST 26.997 27.007 27.032 27.045 

the data in 2015 Prediction LST 29.809 29.284 30.145 28.358 

 
Error 2.811 2.277 3.114 1.313 

 

We also chose a local green park, Veteran Trees Park, in the study area as the testing area to check if the errors 

were similar as the global area. With the data in 2010, the results show a maximum error of approximately −6.8°C 

and a minimum error of approximately −6.3°C; while with the data in 2015, the results show a maximum error of 

approximately 2.6°and a minimum error of approximately 1.7°C (Table 6). 

 

Table 7 The validation results of SEM models with the data in 2010 and 2015 for the testing area in 2017. 

Year LST and Prediction Error 
Grid size 

60m×60m 120m×120m 240m×240m 480m×480m 

SEM model from Real average LST 28.215 28.130 28.048 27.835 

the data in 2010 Prediction LST 21.706 21.353 21.356 21.539 

 
Error -6.509 -6.777 -6.692 -6.297 

SEM model from Real average LST 28.215 28.130 28.048 27.835 

the data in 2015 Prediction LST 30.122 29.872 30.625 29.600 

 
Error 1.907 1.742 2.577 1.764 

 

4. DISCUSSION AND CONCLUSIONS 

Form the aforementioned results obtained from 2015 data, the forecast 2017 average LST error is small. We 

additionally used the 2010 predicted average LST error for comparison. 

The lower predicted accuracy of the SEM model generated from the 2010 data may be because more 

unintended environmental factors affect the LST, thereby making the prediction results less accurate. However, 

regardless of whether the smaller 60 m × 60 m grid or the larger 480 m × 480 m grid is investigated using the 

regression model established using data from different years, the predict model and building regression model used 

the sooner data then the simulation error will be the largest. Therefore, the results suggest that simulating different 

future urban planning programs for studying the LST impact is feasible. However, the longer the data is used in the 

simulation model, the less accurate the simulation results are. Future studies should simulate the future impact of 

the completion of the large-scale redevelopment areas in Taichung City, such as the Taichung Gateway, on the LST 

of its adjacent areas for UHI reduction. Urban planners can determine whether the land use planned in each district 

is suitable. 
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