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ABSTRACT: The absorptions in visible, near and short wave infrared is an effective region for mineral 

identification and mapping. This paper reports the mineral identification using Hyperion data set over part of 

Badush area from Iraq.  Removal of bad bands and bad columns were performed.  The data is converted from 

radiance to reflectance and to remove the atmospheric effects we have used the fast line of sight atmospheric 

absorptions for hyper cube (FLAASH). Noise and spectral dimensionality reduction using minimum noise fraction 

transform from which few bands have been considered as noise free bands. Pixel purity index (PPI) for spatial 

dimensionality reduction and few hundred spectrally pure pixels were taken into account.  The n-dimensional 

visualizer used to locate and group the purest pixels for end member extraction. The cluster of end members is 

identified by comparing the spectra with the available United State Geological Survey (USGS) spectral library. The 

end members are used for classification using spectral angle mapper algorithm which helps to discriminate and 

identify the occurrences of the same minerals. The area from Iraq is considered for study which shows the potential 

of remotely sensed data where the areas are extremely inaccessible in other ways. The study reveals the feasibility 

and potential of hyperspectral data in mineral exploration. 

 

 
1. INTRODUCTION 

 

 

The hyperspectral remote sensing or Imaging spectroscopy is one of the popular approach in surface mineral 

identification and abundance mapping. The hyperspectral sensor captures the information from the focused area in 

many narrow contiguous bands which provides the detailed information about the underlying area with fine spectral 

and spatial resolution as compared to multi spectral remote sensed data. Materials absorb radiation at particular 

wavelengths which helps to identify features based on the position of absorption within the spectrum and each 

feature has its unique signature which helps to uniquely identify different features. The uniqueness is because when 

the electromagnetic radiation interacts with the atoms and molecules which cause charge transfer and electronic 

transition to higher energy levels which creates absorption features in the reflectance spectrum. The hyperspectral 

remote sensing provides a good opportunity in mineral identification. The light reflects by the surface is directly 

depends on the composition and the crystallographic structure. Different minerals have unique absorptions across 

the electromagnetic spectrum which creates unique spectral signature for each mineral. With the help of 

hyperspectral remote sensing, the wide range of minerals can be remotely identified like  sulphates iron oxides, , 

mica, chlorites, clays amphiboles, talc, carbonates, quartz, garnets, pyroxenes, olivine, feldspars and, as well as 

their physicochemistries such as the cation composition and long and short range order. S.S.S., Upadhyay et.al 

(2012) reported each of the minerals have their unique reflectance and absorption pattern across different wave-

length which helps to identify the minerals uniquely. In this work we have used hyperspectral image to analyse by 

applying different standard algorithm to extract the information for mineral identification. 

 

 
2. DATASET 

 

 
The Hyperion data onboard EO-1 satellite was obtained from Earth explorer website which was acquired on 16 

November 2008 is used for this study. The Hyperion Level 1R data, which is radiometrically corrected and 

geometrically mapped is used for the current study. The Hyperion sensor collects 242 unique spectral bands ranging 

from 0.35 to 2.5 micrometers having a 10 nm bandwidth. There are three types of data available these are L1R, L1T 

and level 1Gst which is   radiometrically and geometrically corrected data. It is also terrain corrected. This dataset 

is having same details as level1R data. It was used for geometric correction of L1R data. The study area is a part of 
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Badush village which is located in the northern region of Iraq The area is located at northwest of Mosul City 

covering a part of Badush. The area is located at 36° 52’ 32” N and 43° 3’ 36”E.  

 

 
Figure: 1 Hyperion data of study area (Badush, Iraq) 

 

 

3. METHODS 

 

 

The ENVI 5.3 software was used for entire image processing operations. The following section contains the set of 

operations which were performed on the data set. 

 

3.1 Data Preprocessing 

 

The dataset has to be corrected for bad bands, striping effects and smiling effects in the dataset before the 

atmospheric correction. Pre-processing of hyperspectral images is required for removing sensor errors during the 

acquisition process. The Hyperion sensor records the data in 220 narrow continuous band out of which some bands 

were identified as bad bands because some bands are not illuminated and some bands corresponds to low sensitive 

material of the spectrometer. Finally we have derived a spectral subset of 190 bands which is considered for further 

processing. After the bad band removal the data was searched for bad columns and band by band the bad column 

removal was done. 

 

3.2 Atmospheric correction  

 

The absorption and scattering of the solar radiance takes place when it interacts with the atmosphere and the 

radiance reaches the sensor contains the effect of atmospheric absorption and also dominated by solar irradiance 

curve. To compensate with these atmospheric effects atmospheric correction is required before further processing 

the dataset. There are various approaches for atmospheric correction is available like Empirical approach to get 

relative reflectance and atmospheric models to get absolute reflectance. In the present work we have used fast line 



 

 

 

 
of sight atmospheric analysis of spectral hypercube (FLAASH) atmospheric correction tool is used to remove errors 

from the bands in the visible range through NIR and SWIR regions, and it converts the DN value into ground 

spectral reflectance. FLAASH accepts radiance image as a input which is having calibrated radiance data in a long 

integer, floating point or integer data types. The image should have BIL (band interleaved by line) or BIP(band 

interleaved by pixel) formats. To convert the raw image into radiance units all the VNIR bands should be divided 

by 400 the SWIR bands by 800. A plain text file called scale factor file containing array of 400.0 for first 68 VNIR 

bands and 800.0 for the 170 SWIR bands was created and used   at the time of inputting the image in FLAASH. 

After performing atmospheric correction spectral and spatial dimensionality  reduction is done using minimum 

noise fraction and pixel purity index and few hundred purest pixel were identified and end members were extracted 

which is compared with the USGS standard library. Spectral angle mapper and spectral feature fitting algorithm 

were used for classification. 

 

3.3 Minimum noise fraction transform 

 

The minimum noise fraction (MNF) transformation is used to reduce the dimensionality of the data. In which it 

determines the inherent dimensionality of image data, to segregate noise in the data, and to reduce the 

computational requirements for subsequent processing [Boardman, J.W. et. al 1994]. The minimum noise fraction 

(MNF) transformation actually has two rotations of PCA. This is a two-step process. The first step results in 

transformed data in which the noise has unit variance matrix and no band-to-band correlations. The second step is a 

standard Principal Components transformation of the noise-whitened data [Green, A.A. 1985].the transform orders 

the data according to the signal to noise ratio. In the present work MNF image was created for the spectral subset of 

196 bands out of which 20 bands were considered to be noise free according to their Eigen values and these small 

number of noise free bands were considered for  further processing. 

 

3.4 Pixel purity index (PPI) 

 
The pixel purity Index (PPI) applied on the image obtained from minimum noise fraction transform which was used 

to find out the most spectrally pure or extreme pixels in multispectral and hyperspectral images [Boardman, J. W. 

1995]. The most spectrally pure pixels typically correspond to mixing end members. PPI is computed by repeatedly 

projecting n-dimensional scatter plots onto a random unit vector. ENVI records the extreme pixels in each 

projection are recorded-those pixels that fall onto the ends of the unit vector and it record the total number of times 

each pixel is marked as extreme. A PPI image is created where each pixel value corresponds to the number of times 

that pixel was recorded as extreme. PPI was calculated with 10000 iterations and a threshold factor in the data unit 

was set to 3 for extreme pixel selection. The threshold should be higher minimum threshold so that only few 

hundred purest pixels will be considered for the end member extraction. The results of the PPI are used as input into 

n-D Visualizer 

 

3.5 The n-dimensional visualizer  

 

The output PPI image which is actually a spatial subset of the purest pixels is used in the n-dimensional visualizer 

to visualize the purest pixels as a points in n dimensions and to make the cluster of the pixels which probably 

belongs to a same class by examining their spectral reflectance and these pixels mostly projected on the corners of 

the scatter plot. From these group of pixels classes were identified. The n-Dimensional Visualizer allows us to 

rotate the data interactively in the n-Dimensional space and selection of clusters of pixels into different classes 

[Boardman, J. W. 1998]. The spectra of the end members which is extracted it essential to examine and compare 

them with the standard library spectra to assign these end members to specific mineral types and the selected end 

members are stored in an ASCII file for further processing. 

 

3.6 Spectral Angle Mapper 

 

Spectral angle mapper is very widely used as measure for spectral similarity and it is good methods for 

classification of the hyperspectral images. It determines the similarity between library spectra and image spectra by 

calculating the angle between the both spectra and treating them as a vector in n-dimensional space where the n is 

equal to the number of bands it is quite similar to supervised classification method used for multispectral image 

classification. It is a procedure that determines the similarity between a pixel and each of the reference spectra 

based on the calculation of the “spectral angle” between them. The angle between the two spectrums is the key to 

measure the difference between these two spectra 

 



 

 

 

 
Smaller angular difference determines more similarity and large angular difference shows less similarity between 

image spectra and reference spectra. Let us consider the image spectrum as (t) and reference spectra (r) and the 

difference between the angle is (θ) for each channel (i) [Van der Meer, 2003]. 

 

 

 
Figure: 2 Spectral Angle Mapper 

 

 

 
 

Where, 
 

r = reflectance spectra 

t = unknown spectra 

n =number of bands 

 

The algorithms like spectral feature fitting and mixture tune matched filter can also be used for per pixel and sub 

pixel classification. SAM is one of the best methods for hyperspectral image classification and it is similar to 

supervised classification method used for multispectral images. It deals equally with all possible illumination. As 

the spectra is transformed into vector, hence only  the direction of the vector is considered and not their magnitude 

The figure [3] represents the standard set of procedure for hyperspectral image analysis in mineral identification 

and abundance mapping. 
 

 

 

 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 3 workflow for hyperspectral data processing 
 

4 RESULTS AND DISCUSSION 

 

 

The preprocessing was performed to identify and remove bad bands and bad columns from the image. The bad 

columns were identified by examining each band individually and  removed by replacing with the average of 

adjacent columns  The FLAASH atmospheric correction tool was used with required information to compensate the 

atmospheric effects and to convert the radiance into apparent reflectance. The forward MNF transformation was 

performed on 160 bands of the atmospherically corrected image to reduce the data dimensionality. Figure [4] shows 

the Eigen value plot for the MNF transformed bands, where the values after the first fifteen Eigen bands were 

selected containing minimum noise and most of the spectral information. the rest of the bands were not considered 

for further processing as they contains maximum noise and their Eigen values were  around one. 
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Figure: 4 Plot for MNF Eigen Values 

 

The PPI algorithm then applied on the fifteen noise free MNF bands to identify the spectrally pure pixels. PPI was 

calculated with 10000 iterations and a threshold factor of 2.5 for extreme pixel identification. From the PPI image 

in figure [5]. The purest pixels were selected by giving a threshold of higher minimum threshold as 100. A total of 

900 pixels were selected to create a region of interest (ROI). These pixels were used for end member extraction 

using n-dimensional visualizer. The spectra of pure pixels were plotted into an n-dimensional scatter plot to 

determine the end members.  

 

 

 
 

Figure: 5 PPI Image 

 

 

The USGS mineral library was used due to lack of field spectrometer data through spectral analyst and the 

endmembers for material identification are extracted as different classes using the n-dimensional visualizer. Figure 

[6] shows the endmembers identified using the spectral analyst tool in ENVI software. The Spectral Angle Mapper 

algorithm was used for the identification. The mineral with maximum score for matching was identified as the 

material for that endmember. The group of pixels for each material were analyzed finalized by examining the 

spectral profiles of each pixel in the group. Finally three minerals were identified through the process and they are 

Nontronite, Richterite and Andradite. 



 

 

 

 
 

 

 
 

 

Figure: 6 Profile of End member spectra 

 

 

  
 

Figure: 7 Mineral abundance maps for Andradite, Richterite and Nontronite. 

 

5 CONCLUSION 

 

Hyperion data analysis for mineral identification over Badush area in Iraq has illustrates the use of hyperspectral 

data for surface mineral identification and mapping. The hyperspectral image has been analyzed using standardized 

set of procedures consisting of pre-processing atmospheric correction, end member extraction and the use of 

standard reference USGs libraries for mineral identification and mapping. Because of certain limitation however 



 

 

 

 
ground truth cannot be done but     the obtained results show the potential use of hyperspectral data for surface 

mineral identification and mapping. 
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