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ABSTRACT: In some cases of agricultural features extraction, the binary Support Vector Machine (SVM) 

classification problem only requires the objective of mapping a single class across a relatively large geographic area 

without the need to identify other land use and land cover classes. While the conduct of ground trothing to collect 

field data samples is a requirement to achieve high accuracy levels, sometimes it is impractical considering the labor 

and cost of conducting field surveys that necessitates single species only. As such, the Cocos Nucifera or coconut, 

which is an agricultural class that is visually discernible through LiDAR-derived Canopy Height Model (CHM), may 

be classified without the need for in situ data collection. This is done by exploiting the threshold values calculated 

via Decision Tree (DT) algorithm in reconstructing datasets. In comparison, classification outputs from in situ training 

samples and from the DT-derived samples achieve similar accuracy levels, hence this study introduces a classification 

methodology that eliminates the need for field data gathering and manual ‘training data’ selection in mapping coconut 

species. A single-classification binary SVM has been implemented using LiDAR-derived CHM, utilizing only the 

elevation information contained in the point cloud data, with a grid resolution of one meter. The results suggest that 

automatic selection of samples is tolerable given that a representative calibration site is identified. 

 

1. INTRODUCTION 

 

The Phil-LiDAR 2 Program, also known as the Nationwide Detailed Resources Assessment using LiDAR, is a three-

year program funded by the Department of Science and Technology (Blanco, Tamondong, Perez, Ang, & Paringit, 

2015). The program, which started July 2014, aims to use the LiDAR datasets in order to extract various natural 

resources including agricultural, coastal, hydrological, forest and renewable energy. The acquired data achieves an 

equivalent 1 meter grid resolution and have been used to map natural resources in the Philippines. 

LiDAR have so much applications in agriculture, one of which is this research endeavor which focuses on the 

objective of developing an alternative methodology for mapping coconut resources via linear Support Vector 

Machine classification. In particular, this study aims at generating training datasets without the need to conduct 

intensive field data gathering. This is implemented through the decision tree algorithm. 

1.1. Resources Mapping 

 

Geographic information systems (GIS) technology was originally conceptualized to advance digital processing of 

spatial data. As modern natural resource management deals with temporal and spatial information, GIS has been 

implemented in the analysis, modelling and visualization datasets (Fuller, Wang, Gross, & Berry, 2007). In particular, 

GIS applications, such as resource mapping, land use and land cover mapping, and forest parameter estimations, have 

introduced more advanced means in the management of natural resources. 

 

In their introspection on the variability of the natural resources, Blanco, et al. raised the need to generate a “detailed 

and up-to-date inventory of the natural resources” in the Philippines (2015) in the form of maps and in the aid 

Geographic Information Systems (GIS) applications. Therefore, the nationwide detailed resources assessment 

program known as Phil-LiDAR 2 has been implemented to complement current government programs by producing 

high-resolution natural resources maps in the Philippines. 



1.2. LiDAR technology 

 

RS has been supplementing field measurements in the recent years (Wu, et al., 2016). In addition, with the availability 

of high resolution image data and through the incorporation of more advanced methodologies, accurate segmentation 

and classification of features can be achieved. The transition from the conventional pixel-based approach to the 

object-based image analysis (OBIA) in conducting image processing has also added more capabilities for various 

approaches and applications. 

 

There are a number of remote sensing images in use today that enhance GIS products. Satellite imageries, for instance, 

are now accessible in the public. The use of multispectral and hyperspectral images paved for more capabilities 

particularly in land use and land cover mapping. With the advent of LiDAR technology, more accurate maps have 

been produced due to the elevation information contained in the data. 

 

LiDAR stands for Light Detection and Ranging. As simply defined by the National Oceanic and Atmospheric 

Administration (NOAA), LiDAR is a remote sensing method that is “used to examine the surface of the Earth” using 

pulsed laser. LiDAR technology is capable of collecting data of high resolution and high accuracy on a broad yet 

scalable coverage in a cost-effective means. According to the National Research Council, it is “the most cost-effective 

technology to acquire elevation information over large regions to support floodplain mapping to FEMA accuracy 

standards (2007).” 

 

 

Figure 1. Depiction of LiDAR data using lastools software 

 

LiDAR data (see depiction via Figure 1) contain regularly-spaced points forming a “cloud” with each point containing 

horizontal and vertical position values (x, y and z) with respect to some horizontal and vertical datum. LiDAR data 

also include information about return intensity and return number. LiDAR, with its high resolution, can be used in 

accurately deducing geometric properties from delineated tree crown structures (Wu, et al., 2016). 

 

1.3 Object-Based Image Analysis 

 

Object-based image analysis (OBIA) has been introduced to improve image processing and eliminate the speckles 

that are inherent in the pixel-based process. Instead of involving pixel classification, OBIA works on objects, which 

are outlined regions with homogeneous properties (Yadav, Rizvi, & Kadam, 2015), with segmentation being the heart 

of the process. Segmentation refers to the method of generating object outlines. It refers to the creation of objects that 

are an aggregation of pixels with similar features. Figure 2 shows delineation of objects applied in an elevation layer. 

Pixels of similar elevation values aggregate together, forming the objects. 

 



 

Figure 2. Image scene shows delineated objects, viewed via eCognition 

 

Kumar, et al. discussed that image segmentation can be categorized depending on the approach, such as thresholding, 

region-based, edge-based, ANN-based, PDE-based and Fuzzy-based (2016). 

 

Landcover mapping is fundamental in utilizing RS data for natural resources management. While segmentation is the 

core of the OBIA process, derivation of information from RS images relies on “robust classification methods” 

(Maulik & Chakraborty, 2017). Image classification involves “image pre-processing, the detection and extraction of 

an object, feature extraction, selection of training samples, and selection of suitable classification techniques, post-

classification processing and accuracy assessment.” 

 

 

Figure 3. Major steps in image classification (Maulik & Chakraborty, 2017) 

 

Machine learning plays an important role in the context of image classification. In RS application, machine learning 

algorithms eliminate the task of manual selection of land cover classes. Identification of suitable machine learning 

algorithms considers effectiveness and efficiency. Machine learning can be unsupervised and supervised. Advanced 

classification procedures use supervised methods in which the training sets of examples are used in identifying class 

boundaries. Common supervised learning methods are nearest neighbor, decision tree and Support Vector Machine 

(SVM) algorithms. 

 

The Support Vector Machine (SVM) classifier is one of the most commonly preferred algorithms in RS applications 

due to its “good classification performance with high-dimensional data” (Baldeck & Asner, 2015) and it is even 

labeled as the top-performing classifier algorithm when dealing with hyperspectral data in recent studies. While SVM 

methods were originally tested in the classification of as much classes as possible in an image scene, research 

objectives that deal with one or a few classes are not uncommon. 

 

2. METHODOLOGY 

 

2.1. Study Area and Materials 

 

Flight mission “Laguna_Blk18VWs_20140425” crosses the municipality of San Antonio in the province of Quezon. 

16 LiDAR tiles are selected for processing, with each tile covering a 1-by-1-km grid. These 16 tiles completely cover 

barangays Niing, Bagong Niing and Poblacion. The province of Quezon has been selected as it is one of the top 

producers of coconuts in the Philippines. The municipality of San Antonio is picked due to considerations on the 

variability of features, safety and accessibility. 16 tiles have been used to fit in the study time frame. 
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Figure 4. Selection of LiDAR data tiles in the study area 

The raster elevation layers are shown in Figure 5 for all the study sites selected inside the municipality of San Antonio 

in the province of Quezon. The general workflow of this study is applied separately to all the 16 study areas, with 

each site having its own training and validation samples, and separate accuracy assessment matrices. 

 

 

Figure 5. Depiction of 16 study sites in San Antonio Quezon 

 

2.2. Methodological Workflow 

 

The overall workflow starts with the selection of the LiDAR datasets. Then, the elevation values are rasterized as a 

Canopy Height Model (CHM) that provides height values of features above the ground. The raster datasets are loaded 

in the eCognition software in the implementation of Object-Based Image Analysis. First, a series of segmentation 

procedures are executed until the individual trees are delineated. Then, the ideal classification layers are generated 

using manual classification. The other feature layers are also generated prior to the training of the decision tree 

algorithm. When the feature layers and the classified images are created, the decision tree algorithm is applied to 

extract the separability threshold for the coconuts and other classes. These threshold values are used to generate 

training data sets for the implementation of the Support Vector Machine classifier algorithm. After executing the 

Study Area # 1 Study Area # 2 Study Area # 3 Study Area # 4

Study Area # 5 Study Area # 6 Study Area # 7 Study Area # 8

Study Area # 9 Study Area # 10 Study Area # 11 Study Area # 12

Study Area # 13 Study Area # 14 Study Area # 15 Study Area # 16



SVM classifier, accuracy assessment is performed on all the outputs of the 16 eCognition projects. Figure 6 

summarizes the overall workflow. 

 

 

Figure 6. Implemented methodological workflow of the study 

 

The classes identified through the OBIA process are summarized in Table 1 with their corresponding descriptions.  

 

Table 1. Classes identified in the OBIA process 

Parent Class Class Sub-Class Description 

Class_Ground Class_Ground Class_Ground Objects on the ground 

Class_NonGround Lower Lower 

Objects above the ground but below coconut height 

threshold values. This class should not include coconut 

trees. 

Class_NonGround Upper Upper 
Objects above the ground that may include coconut 

trees, tall structures and other vegetation classes 

Class_NonGround Upper Class_Coconut Objects that are identified as coconut trees 

Class_NonGround Upper Diff_Coconut Non-Coconut objects classified as class_Coconut 

 

Essentially, two sets of classification images, each consists of 16 study sites, are produced in this study: (1) SVM 

classified images using field data, (2) SVM classified image using training samples generated by applying the DT 

thresholds. For every study area, samples are gathered in two 100m-by-100m plots (see Figure 7). DT-based 

generation of samples is also implemented in the same 100m-by-100m grids where the field training samples are 

located. The DT-based samples are classified according to the thresholds identified by the decision trees. Generally, 

the mean values are applied as thresholds as long as they represent at least half of the 16 study sites. 

 

 

Figure 7. Training samples in 100m-by-100m grids 
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3. RESULTS AND DISCUSSION 

 

3.1. Manually classified layers 

 

All of the manually generated coconut tree objects are exported as a shapefile for all the 16 study sites. Descriptive 

statistics are calculated for the feature layers elevation, intensity, area and elliptic fit. The exported shapefile of 

manually classified coconut objects for study area no. 12 is shown in Figure 8. 

 

 

Figure 8. Delineated coconut classes in Study Area 12 

Table 2 summarizes some descriptive statistics of the feature layers in terms of range, mean and standard deviation.  

 

Table 2. Summary of feature statistics for ideal classes 

Feature Range Mean Std Dev 

Area 6.250734 24.44261694 2.258818613 

Elevation 5.734089 15.8615875 1.888205247 

Elliptic Fit 0.04268 0.744761688 0.012538624 

Intensity 31.304401 7.105228375 10.18200848 

 

3.2. Decision Trees 

 

Decision trees are generated for all the 16 study areas using the feature values of the manually classified layers. One 

of the decision trees is shown in Figure 9, which represents study area no. 7. The tabulation of threshold values are 

based on the immediate nodes from the class_Coconut, which are 1.5 and 9.976 here for area and elevation 

respectively. 

 

 

Figure 9. Decision tree and thresholds generated in Study Area No. 7 

The tabulation of decision tree thresholds of 16 study sites is provided in Table 3. We can immediately notice the 

convergence of the values. The mean of the elevation thresholds can then be used as the overall threshold value of all 

study areas. Surprisingly, the area threshold settles at an exact value.  



 

Table 3 Decision tree thresholds of feature layers for classCoconut 

Study 

Area 

Source LAS 

number 
Elevation (m) Intensity Area (Pxl) Elliptic Fit 

1 Pt000222 9.99857 N/A 1.5 N/A 

2 Pt000224 9.99588 N/A 1.5 N/A 

3 Pt000226 9.99014 N/A N/A N/A 

4 Pt000227 10.0005 N/A 1.5 N/A 

5 Pt000228 8.84086 N/A N/A N/A 

6 Pt000229 9.89558 N/A N/A N/A 

7 Pt000264 9.97636 N/A 1.5 N/A 

8 Pt000265 10.0022 N/A 1.5 N/A 

9 Pt000266 10.0013 N/A 1.5 N/A 

10 Pt000267 10.0023 N/A 1.5 N/A 

11 Pt000268 10.0005 N/A 1.5 N/A 

12 Pt000269 10.0031 N/A 1.5 N/A 

13 Pt000270 10.0191 N/A 1.5 N/A 

14 Pt000271 9.99754 N/A 1.5 N/A 

15 Pt000272 9.99789 N/A 1.5 N/A 

16 Pt000286 10.0004 N/A 1.5 N/A 

 

Immediately, we can apply the thresholds to classify the coconut objects. The result of this operation, known as 

classification using threshold values, can be compared to the ideal classification layers from which we can identify 

which non-coconut classes are misclassified by the threshold-approach classification. The difference in coconut 

classes between the threshold-based classification and the ideal classification layers reveals non-coconut objects that 

are prone to be classified as coconuts, and thus labeled as diff_Coconut. Then, we are applying the decision tree 

algorithm among class_Coconut and diff_Coconut to determine their separability thesholds. The generated decision 

tree for study area no. 7 is provided in Figure 10. 

 

 

Figure 10. Decision tree and thresholds generated in Study Area No. 7 

Finally, we can see the decision tree thresholds that separated the class Coconut and the diff_Coconut classes and 

are tabulated in Table 4. 

 

Table 4 Decision tree thresholds of feature layers for diff_Coconut classes 

Study Area 
Source LAS 

number 
Elevation Intensity  Area  Elliptic Fit  

1 Pt000222 
9.92339 

20.795 
  0.593712 

2 Pt000224 
10.1755 

14.9946 
  0.593976 

3 Pt000226 15.0045 28.467  0.597297 

4 Pt000227 15.0544  52.5 0.593907 

5 Pt000228 
9.92494 

15.9471 
  0.594079 

6 Pt000229 
15.0173 

15.8153 
  0.596296 

7 Pt000264 
15.0049 

15.3934 
  0.597101 



8 Pt000265 15.0006 4.53814  0.596875 

9 Pt000266 15.0385  37.5 0.595918 

10 Pt000267 14.9952 3.03391  0.596875 

11 Pt000268 15.0423   
0.597101 

0.557439 

12 Pt000269 16.3846 6.29865  0.59661 

13 Pt000270 14.9966  37.5 0.59661 

14 Pt000271 15.6569 1.30268  0.927249 

15 Pt000272 15.0054  56.5 0.597619 

16 Pt000286 15.0182  41.5 0.59798 

 

3.3. Accuracy Assessment of SVM Classified Image Using Field Data Samples 

 

 

Table 5. Overall accuracies of the classified layers using field-acquired training datasets 

Study 

Area 
LAS No. Class Producer User Hellden Short 

KIA Per 

Class 

Overall 

Accuracy 
KIA 

1 Pt000222 Coconut 1.0000 0.9427 0.9705 0.9427 1.0000 0.9623 0.9184 

  Not Coconut 0.9008 1.0000 0.9478 0.9008 0.8492   

2 Pt000224 Coconut 0.8790 0.9645 0.9198 0.8515 0.7267 0.9062 0.8075 

  Not Coconut 0.9490 0.8328 0.8871 0.7971 0.9085   

3 Pt000226 Coconut 0.7896 0.8788 0.8318 0.7121 0.6396 0.8521 0.7004 

  Not Coconut 0.9060 0.8330 0.8680 0.7667 0.7742   

4 Pt000227 Coconut 0.8894 0.9874 0.9358 0.8794 0.7647 0.9282 0.8549 

  Not Coconut 0.9837 0.8615 0.9186 0.8494 0.9693   

5 Pt000228 Coconut 0.8739 0.9122 0.8927 0.8061 0.7666 0.8992 0.7976 

  Not Coconut 0.9224 0.8880 0.9049 0.8263 0.8313   

6 Pt000229 Coconut 0.9195 0.8946 0.9069 0.8296 0.8613 0.9229 0.8411 

  Not Coconut 0.9252 0.9434 0.9342 0.8765 0.8218   

7 Pt000264 Coconut 0.8797 1.0000 0.9360 0.8797 0.7324 0.9247 0.8455 

  Not Coconut 1.0000 0.8325 0.9086 0.8325 1.0000   

8 Pt000265 Coconut 0.8828 0.9685 0.9237 0.8581 0.8037 0.9355 0.8681 

  Not Coconut 0.9773 0.9133 0.9442 0.8943 0.9436   

9 Pt000266 Coconut 0.9504 0.8687 0.9077 0.8311 0.8833 0.8985 0.7954 

  Not Coconut 0.8410 0.9387 0.8872 0.7973 0.7234   

10 Pt000267 Coconut 0.8974 0.9571 0.9263 0.8627 0.7867 0.9209 0.8412 

  Not Coconut 0.9501 0.8819 0.9148 0.8429 0.9039   

11 Pt000268 Coconut 0.9202 0.8696 0.8942 0.8086 0.8539 0.9066 0.8107 

  Not Coconut 0.8963 0.9373 0.9164 0.8457 0.7716   

12 Pt000269 Coconut 0.9108 0.9666 0.9378 0.8830 0.7658 0.9207 0.8286 

  Not Coconut 0.9397 0.8462 0.8905 0.8026 0.9026   

13 Pt000270 Coconut 0.9517 0.9694 0.9605 0.9239 0.8877 0.9545 0.9070 

  Not Coconut 0.9585 0.9348 0.9465 0.8985 0.9272   

14 Pt000271 Coconut 0.9078 0.9562 0.9314 0.8716 0.8025 0.9249 0.8485 

  Not Coconut 0.9468 0.8891 0.9170 0.8467 0.9001   

15 Pt000272 Coconut 0.9490 0.9739 0.9613 0.9255 0.8985 0.9609 0.9219 

  Not Coconut 0.9734 0.9481 0.9606 0.9242 0.9465   

16 Pt000286 Coconut 0.9432 0.9836 0.9630 0.9286 0.8857 0.9619 0.9238 

  Not Coconut 0.9826 0.9400 0.9608 0.9246 0.9654   

 

Execution of SVM classification using the field coconut samples achieves accuracy levels of around 92.4% with a 

minimum accuracy level of 85%. This is already sufficient given that we are not implementing any refinement 

methods that are outside the SVM classifier. The statistics of the overall accuracies are provided int Table 6. 

 

Table 6. Descriptive statistics of the overall accuracies of 16 sites 

Statistics Value 

Mean 0.923752838 

Standard Error 0.007199131 

Median 0.923795402 

Mode N/A 



Standard Deviation 0.028796523 

Sample Variance 0.00082924 

Kurtosis 1.294439862 

Skewness -0.68500576 

Range 0.110241767 

Minimum 0.85206422 

Maximum 0.962305987 

 

3.4. Accuracy Assessment of SVM Classified Images Through DT-Generated Samples 

 

Table 7. Overall accuracies of the classified layers using threshold-based training datasets 

Study 

Area 
LAS No. Class Producer User Hellden Short 

KIA Per 

Class 

Overall 

Accuracy 
KIA 

1 Pt000222 Coconut 1.0000 0.9012 0.9480 0.9012 1.0000 0.9320 0.8505 

  Not Coconut 0.8210 1.000 0.9017 0.8210 0.7399   

2 Pt000224 Coconut 0.9633 0.9781 0.9706 0.9429 0.9077 0.9643 0.9252 

  Not Coconut 0.9660 0.9435 0.9546 0.9132 0.9435   

3 Pt000226 Coconut 0.9010 0.9430 0.9215 0.8545 0.8224 0.9289 0.8566 

  Not Coconut 0.9530 0.9177 0.9350 0.8780 0.8938   

4 Pt000227 Coconut 0.9350 0.9880 0.9607 0.9244 0.8532 0.9550 0.9082 

  Not Coconut 0.9837 0.9136 0.9474 0.9000 0.9708   

5 Pt000228 Coconut 0.9137 0.9157 0.9147 0.8429 0.8345 0.9183 0.8362 

  Not Coconut 0.9224 0.9206 0.9215 0.8544 0.8380   

6 Pt000229 Coconut 0.9195 0.8946 0.9069 0.8296 0.8613 0.9229 0.8411 

  Not Coconut 0.9252 0.9434 0.9342 0.8765 0.8218   

7 Pt000264 Coconut 0.9458 0.9522 0.9490 0.9029 0.8567 0.9364 0.8645 

  Not Coconut 0.9207 0.9104 0.9155 0.8442 0.8724   

8 Pt000265 Coconut 1.0000 0.8989 0.9468 0.8989 1.0000 0.9503 0.9004 

  Not Coconut 0.9110 1.0000 0.9534 0.9110 0.8189   

9 Pt000266 Coconut 0.9504 0.9455 0.9479 0.9010 0.8949 0.9451 0.8899 

  Not Coconut 0.9393 0.9448 0.9420 0.8904 0.8851   

10 Pt000267 Coconut 0.8974 1.0000 0.9459 0.8974 0.7961 0.9432 0.8865 

  Not Coconut 1.0000 0.8872 0.9402 0.8872 1.0000   

11 Pt000268 Coconut 0.9202 0.8696 0.8942 0.8086 0.8539 0.9066 0.8107 

  Not Coconut 0.8963 0.9373 0.9164 0.8457 0.7716   

12 Pt000269 Coconut 0.9685 0.9685 0.9685 0.9389 0.9082 0.9586 0.9082 

  Not Coconut 0.9397 0.9397 0.9397 0.8863 0.9082   

13 Pt000270 Coconut 0.9517 0.9581 0.9548 0.9136 0.8859 0.9478 0.8929 

  Not Coconut 0.9424 0.9338 0.9381 0.8834 0.9001   

14 Pt000271 Coconut 0.9584 0.9584 0.9584 0.9202 0.9052 0.9533 0.9052 

  Not Coconut 0.9468 0.9468 0.9468 0.8989 0.9052   

15 Pt000272 Coconut 0.9666 0.9743 0.9704 0.9425 0.9322 0.9699 0.9398 

  Not Coconut 0.9734 0.9653 0.9693 0.9405 0.9475   

16 Pt000286 Coconut 0.9432 0.9507 0.9470 0.8992 0.8815 0.9445 0.8888 

  Not Coconut 0.9460 0.9378 0.9419 0.8902 0.8963   

 

Similarly, SVM classification is implemented but this time the training samples are generated using the DT thresholds 

calculated. Accuracy levels on average are around 94.2%, which is better compared to the results of the field data 

samples train. Moreover, the minimum accuracy level determined is 90.7%, a significant difference between the SVM 

results of the field data sample train. 

 

Table 8. Descriptive statistics of the overall accuracies of 16 sites 

Statistics Value 

Mean 0.94232205 

Standard Error 0.004309096 

Median 0.94483337 

Mode N/A 

Standard Deviation 0.017236383 

Sample Variance 0.000297093 

Kurtosis -0.227242611 



Skewness -0.455747085 

Range 0.063315276 

Minimum 0.906578947 

Maximum 0.969894223 

 

We can see that the overall accuracies achieved using DT-generated samples are less scattered with a standard 

deviation of 0.0172, or 1.72%. The relatively small levels of kurtosis and skewness indirectly supports agreement of 

the accuracies in terms of the distribution curve. Moreover, an accuracy of 96.989% is high enough to not consider 

refinement methods in improving the results of the classification. The KIA are also in agreement as shown in the 

table and we are observing sufficiently high levels on producer and user accuracies considering the 16 study sites. 

 

4. CONCLUSION 

 

In this research, DT-generated samples of coconut trees are used as SVM training data sets and are able to achieve 

similar accuracy levels without the need for actual field surveys. This is as long as the selected sample sites, where 

the DT-based samples are calculated, provide representative sample data sets.  

 

While accuracies using field data samples are computed around 92.4%, the mean overall accuracy in the classification 

of 16 study sites via DT-generated SVM training samples is as much as 94.2%. In addition to the improvement seen 

in the accuracy levels, the cost of conducting field surveys is eliminated. This suggests that there are several thresholds 

that can be used to generate samples of coconut classes and the classification can still achieve high accuracy levels 

even without field data surveys conducted. 
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