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ABSTRACT: Snow is the part of atmosphere in the climate system of the Earth, and its physical parameters play 

an important role in hydrological and climate models. The present study concerns with the imaging spectroscopy to 

produce the snow cover maps and to estimate snow grain size in the North-Western Himalayan region. It is 

necessary to develop an approach to accurately map the snow cover, snow grain size spatially using advance remote 

sensing data and technique. Remote sensing techniques can provide spatial and temporal information of a large 

extent, economically and efficiently. In the present study, one of the important snow physical parameters (i.e., snow 

grain size) has been estimated using Spectral Angle Mapper (SAM) classification method and Grain Index (GI) 

method. The study has been carried out by using Hyperspectral EO-1 Hyperion sensor data of 12th January and 

23rd January, 2016 to map the grain size of snow. The FLAASH (Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes) atmospheric correction model has been used to apply atmospheric correction from satellite 

images. The spectral reflectance of different types of snow grain size has been collected in the Hyperion image 

using spectral library. The important wavelengths are found for the retrieval of snow parameters, such as grain size. 

The snow cover maps were produced using Normalized Difference Snow Index (NDSI) technique. The snow maps 

were generated for dry snow, small grain size snow, medium grain size snow, large grain size snow and wet snow 

classes. This study is important for mapping of snow-cover characteristics which can provide valuable input for 

climatology, hydrology, and mountain hazard applications. 

 

1. INTRODUCTION 

“Remote sensing is the science and art of obtaining information about an object, area, or phenomenon through the 

analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under 

investigation” (Lillesand et al., 1999). A significant advantages of remote sensing are its ability to acquire 

information in inaccessible regions. Visible and infrared regions of the EMR spectrum are utilized in passive 

remote sensing, may be multispectral or hyperspectral remote sensing. Snow is an important subject of environment 

science and is a very useful environmental indicator of global changes in terms of long-term monitoring (Rinne et 

al., 2009; Zhao et al., 2013). The continuously changing the global climate and environment makes it necessary to 

realize and compute various hydrological components in competent water resource management for future 

prediction (Saha et al., 2017). The temporal and spatial distribution of snow cover is an important indicator of the 

climate (Kropacek et al., 2010; Zhao et al., 2013). As one of the optical characteristics of snow and snow grain size 

are an important factor causing albedo changes and those is also one of the factors affecting in the global radiation 

balance (Zhao et al., 2013). Hyperspectral sensors developed in 1980’s by scientists at the Jet Propulsion 

Laboratories (JPL). These instruments can captured data in narrow contiguous wavelength bands. The spectral plots 

gives us fine details of the absorption phenomenon also. This was considered as a major development in the field of 

remote sensing. Hyperspectral imagery has been used to detect and map a wide variety of materials having 

characteristic reflectance spectra. For example, hyperspectral images have been used by geologists for mineral 

mapping (Clark and Swayze, 1995), and to detect soil properties including moisture, organic content, and salinity 

(Ben-Dor et al., 2001; Rekha et al., 2012). Vegetation scientists have successfully used hyperspectral imagery to 

identify vegetation species (Ustin et al., 2002; Goodenough et al., 2004; Bachmann et al., 2004; Duk et al., 2014). 
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Snow is an important subject of cryosphere-environment science and is a useful environmental indicator of global 

changes in terms of long-term monitoring (Rinne et al., 2009; Zhao et al., 2013). The temporal and spatial 

distribution of snow cover is an important indicator of the climate (Kropacek et al., 2010; Zhao et al., 2013). The 

spectral region between 350 and 2500 nm is called the reflected part of the spectrum. The reflectance of snow cover 

results from contributions of different parameters, namely snow grain size, moisture, contamination, solar zenith 

angle, sensor and snow depth and cloud cover (Negi et al., 2015; Negi et al., 2010). Numerous studies have been 

performed by different researchers on the spectral properties of snow in the optical region (Negi et al., 2015). Snow 

plays an important role in hydrological and climate model especially snowmelt runoff modeling (Wang et al., 

2014). However, the mapping of snow and its physical parameters is very difficult using field instruments due to 

rough terrain and harsh weather. Moreover, such instruments could provide only point information in this dynamic 

feature. In such a case, remote sensing technique can play vital key role as it provides high spatial and temporal 

information of earth and its features. The spectral nature of snow makes its unique feature relative to other common 

earth surface materials. Snow shows high reflectance in the visible wavelength region and low reflectance in the 

shortwave infrared (SWIR) region (Garg et al., 2014; Doggett et al., 2006).  

1.1 RESEARCH OBJECTIVES  

The main objectives of this research work are to evaluate snow grain size mapping using EO-1 Hyperion 

Hyperspectral remote sensing data. The sub-objectives of the present study are: 

1) Bad bands removal from hyperspectral remote sensing data. 

2) Bad column removal from hyperspectral remote sensing data. 

3) Atmospheric correction of hyperspectral remote sensing data. 

4) To separate snow with other classes 

           – Using NDSI 

           – Using Classification Technique (SAM) 

5)  To identify snow grain size 

           – Using classification technique 

           – Using grain size index  

 

 

2. STUDY AREA  

 

Dhundi areas of Himachal Pradesh, India have been selected for the present study. Himachal Pradesh is famous for 

its natural beauty, hill stations, and temples. Himachal Pradesh has been ranked fifteenth in the list of the highest 

per capita incomes of Indian states and union territories for year 2013-14. The state has several valleys and more 

than 90% of the population lives in rural areas (Wikipedia- Himachal Pradesh). The study area is located in north 

of greater Himalayan range (lies 32°21'13"N latitude and 77°7'47"E longitude) at Dhundi area of Himachal 

Pradesh, India. Rohtang Tunnel is a tunnel being built under the Rohtang Pass in the eastern Pir Panjal range of the 

Himalayas on the Leh-Manali Highway. Rohtang tunnel is not exactly under Rohtang pass; it is slightly west of the 

pass. The southern end (portal) of the tunnel is reached by turning left at Palchan, 10 km north of Manali on the 

way to Rohtang pass or about 40 km before Rohtang pass. After crossing Solang village, Dhundi is reached after 10 

km. The south end of the tunnel is just north of Dhundi across the [[Bhaga River] Tributary of Chenab River]] 

(Wikipedia- Rohtang Tunnel). The climate of the Dhundi area resembles the cold climate of Himachal Pradesh in 

general but its northern position and its proximity to the hills give its own peculiarity. Though the region lies well 

outside the tropics yet its climate is like rest of the north India essentially because of Himalayan chain. The climate 

in Dhundi is warm and temperate. Dhundi has a significant amount of rainfall during the year. This is true even for 

the driest month. The average temperature in Dhundi is 9.4 °C. Precipitation here averages 1094 mm. The driest 

month is November, with 28 mm of rain. With an average of 156 mm, the most precipitation falls in March. June is 

the warmest month of the year. The temperature in June averages 16.9 °C. January has the lowest average 

temperature of the year. It is -1.0 °C. There is a difference of 128 mm of precipitation between the driest and 

wettest months. During the year, the average temperatures vary by 17.9 °C (Patel et al., 2016).  

 



 
Figure 1: Study area map- Dhundi, Himachal Pradesh, India 

 
3. MATERIALS AND DATA USED  

 

Hyperion is an EO-1 (Earth Observation- 1) satellites sensor which was developed by NASA‟s new millennium 

program in 21st November, 2000, is the first spaceborne Hyperspectral sensor for Earth Observation studies (Pande 

et al., 2009). Its orbits in an Earth sun-synchronous (polar) orbit at an altitude of 705 km. Hyperion sensor are a 

push broom imaging instrument with a high spectral resolution (Tatsumi et al., 2010). Each image captures the 

spectrum of a line 30 m along track and 7.5 km wide perpendicular to the satellite motion (Cavalli et al., 2008) and 

covers an area of 7.7x100 square km per image with high radiometric accuracy (12 bit quantization) (Encyclopedia 

of Earth Sciences Series, 2014). There are 220 unique bands with spectral range of 357 - 2576 nm at 10 nm band 

width. The Level 1 radiometric product has total 242 bands but only 198 bands are calibrated (band 8 to 57 for 

VNIR region and 77 to 224 in SWIR region) (Datt et al., 2003; Li et al., 2009). Because of an overlap between 

focal planes of VNIR and SWIR, there are only 196 unique channels (Mitran et al., 2015). Visible and near Infrared 

region (VNIR) i.e. 0.4 to 1μm having 70 bands and the other operates in Shortwave Infrared region (SWIR) i.e. 0.9 

to 2.5μm having 172 bands. The reason for not calibrating all 242 channels is low detector responsively. The data 

in the form of cubes is put into Hierarchical Data Format (HDF) format and is archived. The dataset used for 

current analysis is radiometrically corrected Hyperion L1R radiance dataset.  

 
Table 1: Specification of EO-1 Hyperion 

 

Sensor altitude 705 kms No. of rows 256 

Spatial resolution 30 meters No. of columns 3128 

Radiometric resolution 16 bits VNIR range 0.45 - 1.35 

Swath 7.2 kms SWIR range 1.40 - 2.48 

IFOV (mrad) 0.043   

 



The Hyperion image over Dhundi region, Himachal Pradesh was acquired on 12th January, 2016 at 03:36:14 AM 

and 23rd January, 2016 at 03:39:45 AM. The dimensions of the acquired dataset are 256 (ground samples of 30m 

width) x 3407 (lines) x 242 (bands). The first data is acquired in a wavelength range to 355.5900 nm to 2577.0801 

nm at approximately 10nm sampling interval and the signal to noise ratio is 65 – 130 dB and the second data is 

acquired in a wavelength range to 355.5900 nm to 2577.0801 nm as same as first data (Pargal et al., 2011).  

 
4. METHODOLOGY  

 

Figure 2: Methodology flowchart 

 

Processing of high dimensional hyperspectral data is a very challenging task and the computational complexity is a 

result of vast data volume in numerous spectral bands. Since Hyperion sensor operates from a space platform with 

modest surface signal levels and a full column of atmosphere attenuating the signal, the data demand careful 

processing to manage sensor noise (Rama Rao et al., 2007). The errors are said to be caused due to calibration 

differences in the detector array (Goodenough et al., 2003). The Hyperion datasets has more error when it was 

collected and then, it will be corrected for bad bands, bad columns and atmospheric correction process. 

Preprocessing of hyperspectral images is required not only for removing sensor errors during acquisition but also 

for display, band selection and to reduce computational complexity. The following section discusses briefly about 

pre-processing steps carried out and atmospheric correction done on Hyperion dataset.  

 
4.1 Satellite Data Processing  

 

The Hyperion data was initially processed by the EO-1 satellite product generation system (EPGS) and distributed 

at different processing levels (Singh and Singh, 2015). In this present study the radiometrically corrected level 1R 

data, which became effective from January 2017, has been used. The level 0 (raw) datasets were corrected for dark 

current (remove residual charge in the detectors), sensor bias effects and two specific artifacts known to affect the 



SWIR region to produce level1R product: (1) SWIR smearing, which is the leakage of signal from one pixel into 

the next readout pixel in the spectral direction, and (2) SWIR echo, which occurs when the signal from one image 

echos into a later pixel (Beiso et al., 2002). The data are available in 16-bit signed-integer radiance values. Level 

1R data are used for FLAASH atmospheric correction in ENVI image processing software. Hyperion tools is 

installed in ENVI software for first level image processing. Its converted the raw data in a L1R data. FLAASH 

allows us to define all parameters that influence atmospheric absorption and scattering, such as relative solar 

position, aerosol and scattering models, visibility parameters, ozone total vertical column, adjacency effects (for flat 

areas only), and artefact suppression, and obtain water vapour data (Garcia-Torres et al., 2014; Negi et al., 2011).  

 

To estimate signal-to-noise ratio of Hyperion datasets used in the present study homogeneous area method is used 

(Smith and Curran, 1998). The method is widely used and employed to make a quick estimate SNR. Based on 

variability of landcover small window of 2×2 and 4×4 sizes were used to estimate signal. Homogeneous areas were 

visually selected in vegetation, water and barren land. The method is widely used and employed to make a quick 

estimate SNR. Based on variability of landcover small window of 2×2 and 4×4 sizes were used to estimate signal. 

Homogeneous areas were visually selected in vegetation, water and barren land. The signal (Ra) was estimated for 

each landcover by averaging the pixel responses in the window used. The noise (Rsd) component was estimated by 

standard deviation of the pixel response within the window (Kang et al., 2015).  

 
4.1.1 Identification and Balancing of Bad Columns:  

 

In a pushbroom sensor, a poorly calibrated detector detecting an image on VNIR or SWIR arrays leaves high 

frequency errors (“vertical stripes”) on the image bands (Aggarwal and Garg, 2015). In the present study a tool was 

used to compensate for the striping by visually identifying bad columns and develop a filter to balancing for the bad 

columns. Hyperion datasets global and local de-striping approaches have been suggested in the order to compensate 

for striping. In this study, more bad columns are identify in VNIR and SWIR bands. It was visually identified avoid 

enforcing severe change in the spectra. A total of 120 bands were collected from the first data of 12th January, 

2016. A total of 43 bad columns were identified in 6 VNIR bands and 20 SWIR bands of Dhundi region dataset. A 

total of 138 bands were collected from the second data of 23rd January, 2016. A total of 25 bad columns were 

identified in 4 VNIR bands and 8 SWIR bands of second Dhundi region dataset.  

 

A bad column removal filter was generated to target the removal of bad columns in each band. Without taking into 

account the bad column value the 3×3 neighborhood mean was worked for the replacing of the bad columns 

(Kumar and Garg, 2012). The average value of the neighbor rows are taken in order to implement this a 3×3 filter 

was designed (Figure 3-3) with positional values as (-1,1) =1, (1,0) =1, (-1,-1) =1, (0,1) =0, (0,0) =0, (0,-1) =0, 

(1,1) =1, (1,0) =1 and (1,-1) =1. The filter runs on the bands identified as containing bad columns. The user 

interface allows the user to enter the band numbers that contain bad columns and column number of the specified 

band.  

 
4.2 Preparation of Input Data and Selection criterion  

 

The input parameters required for FLAASH are to be computed before the image is subjected to atmospheric 

correction (Kumar et al., 2017). Sensor type, Pixel size, Ground elevation, Solar zenith angle, Flight data and time, 

Scene centre latitude and longitude, Sensor altitude, Visibility, Atmospheric model, Aerosol model, Water retrieval, 

Adjacency range and zone, Reflectance scale factor and additional parameters are required from the user to run the 

FLAASH model successfully is sensor specific and specific to ground situation. Selection of the input parameters 

has a direct bearing on the output of the atmospheric correction models.  

 

To calculate the nominal parameters related to the orbital inclination of the satellite, the sensor geometry on the 

surface, the radius of the orbit and its angular velocity some earth surface parameters are required. The calculation 

method is simply a function of the latitude and longitude. The satellite information is computed assuming the orbit 

is circular but that the earth is a spheroid. The results are approximate but are useful to provide starting choices in 

atmospheric correction models (Jupp et al., 2004).  
 

In Visibility field, enter an estimate of the scene visibility in kilometers. The initial visibility value is assumed for 

the atmospheric correction if the aerosol is not being retrieved. The following range gives the approximate scene 

visibility values based on weather conditions: in clear weather condition scene visibility is 40-100 km, in moderate 

haze weather condition scene visibility is 20-30 km and thick haze weather condition scene visibility is 15 km or 

less.  

 



Based on geographic location the user has to choose the correct atmospheric model for the correction. FLAASH 

have six atmosphere types based on a seasonal-latitude surface temperature MODTRAN modelled atmospheres. 

Select a model whose standard column water vapor amount is similar to, or somewhat greater than, that expected 

for the scene.  

 

Aerosol model supports four basic aerosol types: rural, urban, maritime, and tropospheric. Based on the geographic 

location the user has to make a choice. FLAASH include a method for retrieving the water amount for each pixel. 

To solve the radiative transfer equations that allow apparent surface reflectance to be computed, the column water 

vapor amount for each pixel in the image must be determined. FLAASH includes a method for retrieving the water 

amount for each pixel.  

 

FLAASH allows adjacency range of 0.5 to 1 km. As the two dated dataset in use belong to a heterogeneous area an 

adjacency range of 0.5 km is selected with weight factor of 1. Three multiscatter models are available in FLAASH 

Isaacs, Scaled DISORT, and DISORT. The recommended Scaled DISORT with 8 streams (signifying 8 directional 

adjacency) is selected for the present study (Kawishwar et al., 2007). More optional parameters available in 

FLAASH are aerosol scale height, CO2 mixing ratio, modtran resolution, zenith angle and azimuth angle. The scene 

of the study area is not seen to be affected by aerosol scale height and CO2 mixing ratio, these options were not 

utilized during atmospheric correction.  

 

4.3 Snow Grain Size Measurement  

 

Snow grain size measured in two ways. The most analytical, but time-consuming, technique is by stereology 

(Dozier et al., 1987; Nolin and Dozier, 2000). The two techniques have been applied to map snow grain size: 

Spectral Angle Mapper (SAM) and Grain Size Index (GI) method proposed based on the field collected 

hyperspectral reflectance data (Negi et al., 2010).  

 

4.3.1 Grain Size mapping using GI: 

 

The snow grain size mapping was calculating using the grain index method and used by based on the field-

collected Hyperspectral reflectance data (Negi et al., 2010). In the present study, the Hyperion band number 24 

(central wavelength 589.62 nm) and band number 90 (central wavelength 1043.59 nm) were used for both dataset. 

The snow map generating of fine, medium, and coarse grain size classes. It was generated using the threshold grain 

index values. To be sure that the index shows snow grain size, one should use a snow classification algorithm in 

addition to check if there really is snow on the ground.  
 

  
 
4.3.2 Grain Size mapping using NDSI:  

 

Before estimated the snow grain size, it had to extract the sow cover area, which requires the difference between 

snow cover surface and non-snow cover surface. Currently, there are five main methods to extract snow cover 

using remote sensing data. They are visual interpretation, a multiband imagery calculation, the brightness-threshold 

method, a snow cover index, and a radiative transfer model (Zhao et al., 2013). The above relation was only valid 

for snow cover pixels, which were selected with the help of normalized difference snow index (NDSI) and visible 

channel reflectance.  

 

 
In this present study, the Hyperion band number 15 (central wavelength 498.04 nm) and band number 146 (central 

wavelength 1608.61 nm) were used for both dataset. Therefore Normalized Difference Snow Index (NDSI) was 

applied on Hyperion scenes (Negi et al., 2010).  

 

 



4.3.3 Grain Size mapping using SAM:   

 

SAM (Spectral Angle Mapper) a supervised classification method, is used to calculate the grain size. The SAM 

method obtain the similarity between the two spectra (i.e. the pixel spectra to known/reference spectra) measured 

by an angle between two vectors representing these spectra. A Hyperion image of upper portion of Himalaya was 

selected for snow grain size estimation as this area is mostly glaciated with gradual slopes (less than 5
o
) and to 

avoid fractional snow cover. In this classification, collects the spectra from the image and identify the each separate 

class. Then this separate spectra of separate class was stored in a spectral library. The selected image spectra were 

further used as reference spectra for mapping grain size using the SAM method (Rowan and Mars, 2003). The 

extracted endmembers spectra are then compared with the in-situ measured spectral reflectance using optical 

spectro-radiometer for identification (Singh et al., 2015). The selected image spectra endmembers were further 

used as reference spectra for mapping grain size using SAM method.  

 

5. RESULTS  

 

5.1 Hyperion Data Processing  

 

The Hyperion sensor instrument provides a new class of Earth observation data for improved Earth surface 

characterization (Silverman et al., 2000). Hyperion has 242 bands but provides a high resolution hyperspectral 

imagery capable of 220 spectral bands (from 0.4 to 2.5 µm) with a 30-meter resolution. There are a number of 

corrupted pixels and dark black vertical stripes in the Hyperion imagery datasets that are caused by calibration 

differences in Hyperion detector array and temporal variations in the detector’s response (Acito et al., 2011). 

Detection of bad columns is carried out using set thresholds based on median values from its neighborhood. Bad 

columns are removed by neighbor’s pixel average value in spatial pixel editor approach. There are many bad 

columns and bad pixel in Hyperion imagery dataset. The bad columns or bad pixel have zero DN value for 

calibration differences in Hyperion detector array. This DN values are change by neighbors average pixel values in 

imagery.  The figures below show examples of different types of bad pixels in the Hyperion data.  

 

 
 

Figure 3: Bad column correction using Hyperion tools in Band 94, 12th Jan, 2016 data 

 

5.2 Atmospheric Correction using FLAASH 

 

After the removal of the bad bands, bad columns and destriping the resized 120 bands in 12th January, 2016 dataset 

and 138 bands in 23rd January, 2016 dataset were corrected for atmospheric errors using the FLAASH (Fast Line-

of-Sight Atmospheric Analysis of the Spectral Hypercubes) model of ENVI’s atmospheric correction model. The 

Hyperion image of Dhundi area is badly effected by atmospheric condition such as haze and its time of acquisition. 

Visible, infrared and short wave infrared can be corrected for atmospheric errors using FLAASH atmospheric 

correction model (Aggarwal and Garg, 2015). The spectra of snow is calculated from radiative transfer model, 

positioning for scattering and absorption by the snow grains, water absorption, and particulates. Spectroradiometer 

was used to measuring spectra of different snow and mixed of other feature snow-covered land surface objects. The 



raw image of Hyperion is not used for measuring a snow spectra. After that FLAASH run, it’s used to measuring 

for snow spectral signature. Before the FLAASH run, the images of snow spectra shows wrong spectral signature 

and its showing a different spectra of each feature of the image. Snow mixed objects spectra is also differ in that 

process. The figure below shows the difference between initial image of Hyperion and after the running of 

FLAASH image’s snow spectra.  

 

              
Figure 4: FLAASH atmospheric corrected snow spectra of Dhundi region, 12

th
 Jan, 2016 

 

               
Figure 5: FLAASH atmospheric corrected snow spectra of Dhundi region, 23

rd
 Jan, 2016 

 
 

5.3 Snow Grain Size Mapping  

 

5.3.1 Snow Grain size mapping using GI:  

 

The snow grain size mapping was calculated using the grain index method and it was used by based on the 

collected Hyperspectral reflectance data. In the present study, the Hyperion band number 24 (central wavelength 

589.62 nm) and band number 90 (central wavelength 1043.59 nm) were used for both dataset. The snow map 

generating for dry snow, small grain size snow, medium grain size snow, large grain size snow and wet snow 

classes. Before estimated the snow grain size, it had to extract the sow cover area, which requires the difference 

between snow cover surface and non-snow cover surface. The formula was used for calculating GI and NDSI for 

snow grain size mapping. Both of the datasets were calculated for GI mapping. The snow mask was also generated 

for both of the images. The figure below shows the spectral distribution of the snow grain sizes for two datasets.  

 

 

 



                 
Figure 6: Snow grain size map using GI of 12

th
 Jan (left) and 23

rd
 Jan (right), 2016  

 

                 
Figure 7: NDSI derived using Hyperion data of 12th Jan (left) and 23rd Jan (right), 2016  

 

 

 

 



Snow grain size map was estimated using snow grain size index for a small part of the greater Himalaya range on 

12th January and 23rd January, 2016. On the comparison between two dataset image of GI method classified image 

shows that 7.55% area is increased in fine grain size snow, 4.96% area is decreased in medium grain size snow and 

3.48% area is also decreased in coarse grain size snow. Unclassified areas are showing in images which are in black 

color (fig.6 and fig.7). But in comparison image of GI method classified image shows that 3.11% area is decreased 

in 12th January dataset image.  

 

Table 2: Comparison of Snow grain size using GI classified image 

  

Snow grain size (mm) GI method (% area) 

of 12
th

 Jan, 2016 

GI method (% area) 

of 23
rd

 Jan, 2016 

Fine (0.0-0.25) 7.89 15.44 

Medium (0.25-0.50) 22.64 17.68 

Coarse (0.50-0.83) 11.96 8.48 

Unclassified 57.51 54.40 

 
5.3.2 Snow Grain size mapping using SAM:  

 

The SAM classification has been done using the spectral library approach. The different spectra was collected from 

reflectance image of Hyperion and the collected spectra was save in spectral library for SAM classification. An 

image spectra has been generated for dry snow, small grain size snow, medium grain size snow, large grain size 

snow and wet snow using simple z-profiling in ENVI software. In this classification, collects the spectra from the 

image and identify the each separate class. In this classification method, some area was not classified because of 

low spectral signature. So, this class was not classified and named by unclassified class in the image. This was 

happen for high altitude area, back side shadow of hilly region etc. The matrix, comparing different snow grain size 

classes using the results classification of the SAM methods, shows the overall classified area to be approximately 

47% and the unclassified area was 53% approx. in 12th Jan, 2016 dataset. Another dataset define 36.28% classified 

and 63.72 % unclassified in 23rd Jan, 2016.  

 

    
Figure 8: The generated image spectra of 12th Jan, 2016 and 23

rd
 Jan, 2016 data  

 

Snow grain size map was estimated using snow grain size index and compared with SAM classified image for a 

small part of the greater Himalaya range on 12th January and 23rd January, 2016. On comparison between two 

dataset of SAM classified image shows that 7.26% area is increased in small grain size snow cover area, 3.22% 

area is decreased in medium grain size snow and 3.88% area is also decreased in large grain size snow. The present 

methodology for the mapping is indicates of snow grain size mapping using SAM is well suited for Himalayan 

region at varying altitude from 4000 m and above.  
 



 
 

Figure 9: Spatial distribution of grain sizes at a continuous scale using SAM classification of 12th January (left 

side) and 23rd January (right side) imagery  

 

Table 3: Comparison of Snow grain size using SAM classified image  

Snow Grain Size Class SAM Classification method 

(% area) of 12
th

 Jan, 2016 

SAM Classification method 

(% area) of 23
rd

 Jan, 2016 

Dry snow 15.92 7.33 

Small grain size 6.38 13.64 

Medium grain size 10.43 7.21 

Large grain size 7.44 3.56 

Wet snow 6.82 4.54 

Unclassified 53.01 63.72 

 
6. CONCLUSION  

 

SAM and GI methods provides the properties of snow such as snow cover area snow grain size and temperature are 

very important for hydrological modeling. These classification techniques are very important when quantity of 

information is not necessary such as glacier forecasting, melting snow, climate study etc. For the analysis 30m 

spatial resolution EO1-hyperion data of 12th January and 23rd January, 2016 has been used. These methods of 

snow physical parameter measurements are very easy, otherwise its difficult and time consuming. In this study, 

both SAM and NDSI approaches can be used to map snow cover area. The analysis procedure consists of FLAASH 

(Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) atmospheric correction model. The SAM 

method was found useful to identify the different levels of snow, since as per our knowledge. The GI method was 

also found to useful identity of snow but it’s not a only suitable techniques for measurement of snow cover area. 

The wavelength near of 590 nm and 1040 nm are most sensitive to snow grain size. This wavelength consists in 

band 24 and band 90 of Hyperion imagery. Therefore, the future investment focus on more number of bands and 

radar image to measurement the snow cover area and snow grain size.   
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