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ABSTRACT: We present an object-based image classification method to detect aircrafts from high-resolution 

satellite images. The detection of all varieties of aircrafts is a difficult problem due to the large intra-class variability 

of aircraft objects, the presence of complex foreground / background scenarios and the large volume of data to be 

processed. Further as the resolution of data increases the intra-object homogeneity decreases. In the proposed 

approach we use localised processing and leverage object-level attributes for classification. Localised adaptive 

segmentation is proposed for segmenting probable aircraft objects from the image and then object classification is 

performed using kNN and SVM. Three band (RGB) data having about 0.5m spatial resolution are used in the 

experiments. We achieve an accuracy of 81% and 93% using kNN and SVM respectively. 

 

1.  INTRODUCTION 

 

Detection of various interesting targets including aircrafts, helicopters, vehicles, tanks, field guns, and the like from 

high-resolution satellite images is an important problem in surveillance. A generic solution frame-work to detect all 

interesting targets is an open problem. In this work we attempt to detect only aircrafts from high-resolution satellite 

images using object-based image classification methods. Even in this restricted context, detection of all types of 

aircrafts is difficult due to the large intra-class variability of aircraft objects in terms of their spectral and spatial 

properties. For high-resolution satellite images, the presence of complex foreground / background scenarios and the 

large volume of the data add up to the complexity of the process. Further, as the resolution of data increases, the 

intra-object homogeneity decreases. This poses more hurdles in the detection process. 

 

Image segmentation, which delineates objects from an image, is the first step in object based image classification 

technique. Various researchers including (Gonzalez, 2008), (Freixenet, 2002), (Fu, 1981), (Deng, 2001), (Canny, 

1986), (Meyer, 1990), (Jianbo, 2000), (Forcadel, 2008), (Grady, 2006a), (Grady, 2006b) and (Blaschke, 2000) give 

detailed account of different image segmentation techniques. The objective of image segmentation followed by 

classification is to automatically interpret features / objects in an image. In-depth explanations, comparison of the 

methods of classification and their applications can be found in (Lu, 2007), (Blaschke, 2003), (Karydas, 2011), 

(Blaschke, 2010), (Murthy, 2012), (Lillesand, 2008) and (Navulur, 2007). 

 

Image classification methods for satellite images were initially motivated by land-use and land-cover classification 

applications. Advances in remote sensing and availability of satellite data with high spatial and spectral resolution 

have fuelled the efforts for detection and identification of smaller objects from satellite images as discussed in Section 

2. Target detection from satellite images finds wide applications in military and civilian sectors. In military sector, 

detection of various types of targets like aircraft, tanks, field guns etc. helps in assessing combat preparedness of 

hostile forces and in gathering geo-intelligence. Detection of field guns and their orientations can help in computing 

the coverage zone of the weapons and in the depiction of the same on a Geographic Information System (GIS). So a 

generic framework to detect various interesting targets from satellite images can be of great aid in military operation 

planning. In civilian sector, such target detection can find applications like computation of vehicle density on a 

particular road, number of vehicles in a parking lot etc. Hence it can aid in building intelligent transportation systems 

and in city planning. Aircraft detection, in specific, helps in monitoring the dynamics in airbases by identifying types 

and volumes of aircrafts operating from an airbase. In this context, the current paper attempts to detect (aircraft-like) 

targets from high resolution satellite images. 

 

The paper is organized as follows. In Section 2, we briefly review the prior work in this field and relate them to ours. 

Localized Adaptive Segmentation (LAS) algorithm to separate out probable aircraft objects from a satellite image is 

proposed in Section 3. Feature space construction and object classification are presented in Section 4.  Results are 

discussed in Section 5. Finally we conclude in Section 6. 

 



2.  PREVIOUS WORKS 

 

In this section we briefly review the existing work on this problem. On the way we try to relate these to our work and 

comment on the similarity and the dissimilarity. 

 

Classifications of remotely sensed images were initially motivated by land-use and land-cover applications. Later, 

with the availability of high-resolution data, localization and identification of smaller objects from the satellite images 

started finding use. For example, Segl and Kaufmann (Segl, 2001) designed an object-based ANN classifier to detect 

house-plots from 4.5m MOMS-02 images. These plots are much smaller than typical objects in a land-use 

application; but are still quite large compared to the target objects of our interest. In (Zheng, 2006), Zheng et. al. 

manually selected the pixels corresponding to roads from 0.6m Quickbird panchromatic images. Classification was 

then applied on these selected pixels only rather than taking the entire satellite image as input. Jin and Davis (Jin, 

2007) restricted to the road layer of a GIS for the context of vehicles, used morphological filtering and finally ANN 

classifiers for vehicle detection from 1m resolution IKONOS data. In (Zheng, 2006) and (Jin, 2007) both, pixel 

classification is employed on the candidate pixels. Hence, unlike our method, these methods cannot leverage the 

characteristics of shapes and objects for classification. Arora et. al. (Arora, 2013a and  Arora, 2013b) worked with 

hyper-spectral images to detect aircraft using fuzzy and sub-pixel classifications. We, however, use less expensive 

RGB images here. Liu et. al. (Liu, 2013) used orientation and shape in segmentation and then used kNN classifier to 

identify aircrafts. Naturally its accuracy depends on the orientation of the aircraft and view direction. Our method, in 

contrast, is invariant to pose. Instead of learning from binary sub-images in the segmentation result, we engage a 

feature space consisting of size, shape, and spectral properties. Banerjee et. al (Banerjee, 2016) used saliency to 

localise regions of aircraft like objects in satellite image and further leveraged a multi oriented conical pyramid 

(MOCP) of target templates for matching. This requires generation of MOCP for various types of aircraft. 

 

3.  SEGMENTATION 

 

We first carried out several experiments using the existing edge-, clustering-, or region-based algorithms to segment 

the objects in a satellite image. We try Region-based JSEG (Deng, 2001) algorithm for its ability to segment pattern of 

pixels in colour images. The popular K-means algorithm in the clustering based approach is used for its simplicity. 

Canny edge detector (Canny, 1986) and Watershed (Meyer, 1990) algorithms are attempted from the edge-based class. 

Finally, we construct multi-resolution image pyramids by down-sampling the image using Gaussian kernel and then 

applying watershed segmentation. 

 

From the results we observed that these algorithms do not preserve the shape of an aircraft well and typically result in 

many fragmented objects (Figure 2). Hence, it gets difficult to reason about the objects. Also these algorithms operate 

on the whole input image. This is expensive and often unnecessary. Hence we focused on a modified localized 

approach to segmentation. Naturally, getting local optimum (like threshold) in an image is easier than getting global 

optimum values. With this we propose the Localized Adaptive Segmentation (LAS) algorithm in the next section. We 

assume that objects of interest are brighter than their surroundings. 

 

3.1 Localised Adaptive Segmentation (LAS) 

 

We present Localised Adaptive Segmentation (LAS) in Algorithm. 1. Major steps of LAS are -- (1) Generation of 

seed image, (2) Localised thresholding, and (3) Area-based filtering.  

 

Algorithm. 1 Localised Adaptive Segmentation 

1: Irgb ← Input RGB Image 

2: Ig ← Gray scale image of Irgb 

3: Ic ← Ig • b1 

4: Ith ← Ic − (Ic ◦ b2) 

// Seed image generation 

5: t ← threshold value obtained by Ostu’s method or empirically from Ith 

6: It ← threshold(Ith, t) 

7: Is ← smooth(It) 

// Localised Thresholding 

8: cntrs ←Contours of Is 

9: rects ←Minimum bounding rectangles of cntrs 



10: for each rect in rects do 

11:  Expand rect by buffer guarding boundary conditions 

12:  Isub ← SubImage(Ith, rect) 

13:  ISubT h ← Isub − (Isub ◦ b3) 

14:  Apply Otsu’s thresholding on ISubT h 

15: end for 

16: Io ← Assign all pixels of operating image which does not belong to any expanded rect to 0 

// Contour guided area based filtering 

17: tCntrs ← Top level contours of Io 

18: for each cntr in tCntrs do 

19:  if Area(cntr) > tA then 

20:       Select the corresponding object 

21:  end if 

22: end for 

 

The input RGB image (Irgb) is converted into gray scale (Ig) and morphological closing is applied (Ic) using 

rectangular structuring element (b1) to remove the shadows of the objects. If the shadows are not removed, it may 

lead to distortion in the shape of the object obtained by the segmentation. Next the top-hat transformation is applied 

(Ith) to suppress the background and brighter objects larger than the structuring element b2. Threshold t for the Ith is 

obtained mostly by Otsu's method (Otsu, 1979), though, in some cases empirical values are used. Smoothing (Is) is 

applied to the thresholded image (It) to combine small objects in close vicinity.  

 

Top level contour of every object in Is is obtained and its bounding rectangle is computed. These bounding rectangles 

are expanded by a buffer distance (guarding the image boundary conditions) which gives background of probable 

aircraft objects and aids in getting a better threshold value. Top-hat transformation and thresholding are applied on the 

sub-image defined by the expanded bounding rectangles. This gives a better segmentation of the local sub-image. All 

the pixels which do not belong to the rectangles are set to 0. Next, the contour area of the objects in Io is computed and 

only objects having area greater than the threshold tA are retained in the output and rest are set to 0.  
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Figure 1. Images with LAS segmentations. 

Figure 1 shows the input images and corresponding segmentation results using LAS. For Figure 1(a), even a partially 

visible aircraft is cleanly segmented in Figure 1(d). The shadow in Figure 1(b) is removed in Figure 1(e). However, 

the shadow on the body of the aircraft in Figure 1(c) splits the segmented object in two in Figure 1(f). It can be 

observed from the results that the number of objects in the segmentation output using LAS is less compared to the 

existing methods. In Figure 2 the results of existing methods are shown for comparison. While LAS preserves the 

closed shape of the objects, K-means and Canny's operator destroy the structures substantially. At times, however, 

cluttered scenario degrades the result and the parameters like threshold value and size of the rectangular structuring 

elements are empirical. 

 



 

(a) RGB Image (b

Figure 

After the segmentation, the top level contours of the objects are computed. OpenCV API

(Suzuki, 1985) is used for computing contours of objects. Figure 

method. These shapes are further used to extract 

spectral (intensity) parameters of the object

 

(a) Segmented Image

4.  CLASSIFICATION 

 

Once the objects have been extracted, we compute six structural and two

features are then used in classification. We use 

 

4.1 Feature Space Description 

 

The following features are extracted for every object:

 

1. Area: The area of the object

2. Perimeter: The arc length of the contour of the object.

3. Aspect ratio of bounding rectangle:

4. Solidity: Ratio of the area of the 

5. Compactness: Perimeter
2
 / Area

6. Circularity: Area of the object divided by the area of the circle having same perimeter

7. Average Pixel Value: Mean pixel value of the object in the gray scale image

8. Standard Deviation of Pixel Value:

 

Perimeter and area captures the size attributes of the object and features from

7 and 8 are intended to capture the spectral attributes of the object.

 

5.  RESULTS AND DISCUSSIONS

 

Our data set for classification comprises 131 objects extracted from 28 high

segmentation applied on the 28 images produces 131 objects. We manually label them to get 46 aircraft and 85 

non-aircraft objects and compute all the 8 features for each object. Out of the 131 objects, 84 objects (31 aircraft and 

53 non-aircraft objects) are used for training the classifiers and 47 objects (15 aircraft and 32 non

set aside for testing the classifiers. The training objects are from 19 of the 28 images and test objects are from 9 

images. 
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(c) K-means Result  

After Smoothing 

(

Figure 2. Comparison of LAS Segmentation Results 

the top level contours of the objects are computed. OpenCV API  for the boundary tracking

is used for computing contours of objects. Figure 3 shows an example of shape extraction using theis 

method. These shapes are further used to extract shape parameters of the object and for the mask for computation of 

spectral (intensity) parameters of the objects. It forms the feature space. 

 
Segmented Image (b) Contour 

Figure 3. Shape Extraction 

ave been extracted, we compute six structural and two spectral features for every object. These 

ed in classification. We use kNN and SVM algorithms for classification.

features are extracted for every object: 

The area of the object 

The arc length of the contour of the object. 

ct ratio of bounding rectangle: Length / Width ratio of the minimum bounding rectangle of the object

Ratio of the area of the object to the area of the convex hull of the object 

/ Area of the object. 

Area of the object divided by the area of the circle having same perimeter

Mean pixel value of the object in the gray scale image 

ndard Deviation of Pixel Value: Standard deviation of pixel values of the object in the gray scale image

Perimeter and area captures the size attributes of the object and features from 3 to 6 capture shape attributes. Features 

to capture the spectral attributes of the object. 

RESULTS AND DISCUSSIONS 
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re used for training the classifiers and 47 objects (15 aircraft and 32 non-aircraft objects) are 
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5.1 Classification using kNN 

 

For classification we first use kNN with equal weights. Experiments are carried out for different values of k using 

Euclidean as well as cosine distances. The response is plotted in Figure 4. Best accuracy of 80.9% is obtained for k = 

3 with Euclidean distance for test data. So we use 3NN with Euclidean distance in our experiments. Table 1 shows the 

confusion matrix of 3NN corresponding to the training as well as test data sets. 

 

 

Figure 4. Determination of Optimal k Value of kNN 

Table 1. Confusion Matrix for 3NN Classifier 

 Predicted Class 

                                                                        Training Dataset Test Dataset 

 Actual Class Aircraft Non- Aircraft Aircraft Non- Aircraft 

Aircraft 26 5 10 5 

Non- Aircraft 5 48 4 28 

 
 

5.2 Classification using SVM 

 

Using SVM, an accuracy of 93.6% is obtained on test data. Linear SVM (Cortes, 1995) is used in the experiment. 

Table 2 shows the confusion matrix for SVM corresponding to training as well as test data sets. 

Table 2. Confusion Matrix for SVM Classifier 

 Predicted Class 

                                                                        Training Dataset Test Dataset 

 Actual Class Aircraft Non- Aircraft Aircraft Non- Aircraft 

Aircraft 27 4 13 2 

Non- Aircraft 4 49 1 31 

 

 

Compared to kNN, SVM shows better accuracy. For the test data the number of false positives reduced from 4 in case 

of 3NN to 1 for SVM. Also false negatives with 3NN is 5 whereas it is 2 with SVM. The performance measures for 

the classifiers are shown in Table 3. Recall is the percentage of aircraft objects correctly recognized out of the total set 

of aircraft objects. Precision is the percentage of actual aircraft objects out of the total set of objects recognized as 

aircrafts. Accuracy is the overall percentage of objects (aircraft as well as non-aircraft) correctly recognized.  



Table 3: Performance Measures for the Classifiers 

                                                                        3NN SVM 

Measures Training Test Training Test 

Recall 83.9% 66.7% 87.1% 86.7% 

Precision 83.9% 71.4% 87.1% 92.3% 

Accuracy 88.1% 80.9% 90.1% 93.6% 

 

Sample outputs with objects detected using SVM are shown in Figure 5. Green bounding rectangles are the output 

from our system and red ellipses indicate the error cases. In Figure 5(a), aircraft is detected in a clear image with 

strong shadows. Figure 5(b) shows detection of aircraft in dark background. In Figure 5(c) one aircraft is detected 

correctly, however there is a false positive. Figure 5(d), (h), (i) all are true positive cases. In Figure 5(e) one aircraft is 

missed out in LAS since it is darker. Figure 5(f) indicated false negatives case, as LAS could not segment it right. 

False negative case due to clutter is shown in Figure 5(f). 

 

Our method gives good result if the objects are not occluded or cluttered. It is orientation independent and works in 

the presence of shadow. For the LAS segmentation we assumed lighter objects against darker background. So darker 

aircrafts are not detected (Figure 5(e)). The false positive cases (Figure 5(c)) can be avoided by refining the feature 

space. In the false negative case (Figure 5(f)) where two aircraft are classified as non-aircraft, segmentation did not 

produce good result. Cluttered objects with overlapping bounding rectangles also degrade the result (Figure 5(g)). 

Improving the quality of segmentation and refining the feature space can help get a better recall and precision of the 

detection of aircrafts. 
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Figure 5. Detection using SVM 

Interestingly, the method tries to capture size, shape and spectral properties of the object in the learning and 

classification process. Hence it will work well for targets other than aircraft too if they have distinctive shapes. The 

current data set has a limitation of not having mix of civilian, military and cargo aircraft. 

 



6. CONCLUSION 

 

In this paper we present a method for detection of aircraft from high-resolution satellite images using an object-based 

image classification method. The method segments the image into objects using a novel localized adaptive 

segmentation algorithm. Six structural and two spectral features are then computed for each object. Finally, suitable 

classifiers are trained with features from known objects to get the target detection system. Experiments with kNN and 

SVM classifiers show that SVM gives a better accuracy of 93.6% on the test data. From the results we conclude that, 

common segmentation algorithms do not produce the desired results for high-resolution satellite images. The 

proposed Localized Adaptive Segmentation algorithm, in comparison, performs well. 

 

The proposed method works well if the aircraft are cleanly separated. If bounding rectangles of the aircraft overlap 

then the quality of the result degrades. The method can be improved by tuning the three stages - Segmentation, 

Classification and Enhancement of the feature data base. In future work, we are planning to enhance the feature space 

by augmenting with additional shape and spectral features such as moment of inertia along axis in XY plane and 

discrete Fourier transform (DFT) coefficients of 16 bin histogram.  Further the proposed method can be extended to 

compute the orientation and count of each type of aircraft in a satellite image. It can be extended to associate 

contextual validations in the detection process and for detection of other types of targets. 
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