
SEA SURFACE CURRENT  RETRIEVING FROM TANDEM-X DATA SATELLITE 

DATA 

 
Maged Marghany  

Geoinformation Global Space Technology 

130B, Jalan Burhanuddin Helmi, 

Taman Tun Dr. Ismail, 

60000 Kuala Lumpur 

Email:magedupm@hotmail.com 

 
 
KEYWORDS : TANDEM-X satellite, Multi-objective evolutionary algorithm, Hopfield neural network, ocean 

current, Pareto front. 

 

ABSTRACT: This is first work is done on application of TanDEM-X data satellite data to Malaysian coastal waters. 

This aims at utilizing an optimization of Hopfield neural network to retrieve  variation of sea surface current along 

Malaysian coastal waters. In doing so, multi-objective evolutionary algorithm based on Pareto front is used to 

minimize the error has produced due to non-linearity between TanDEM-X data and sea surface movements. This 

work aimed at retrieving sea surface current from TanDEM-X data along the coastal water of Malaysia. Two 

approaches have been implemented Hopfield neural network algorithm and  Pareto optimal solution. The study shows 

that the Pareto optimal solution has highest performance than Hopfield neural network algorithm with lowest RMSE 

of ±0.009. Further, Pareto optimal solution can determine the sea surface current pattern variation along coastal water 

from TanDEM-X data. In conclusion, TanDEM-X data  shows an excellent promises for retrieving sea surface.  

 

 

1.  INTRODUCTION  
 

Synthetic aperture radar (SAR) is recognized because the potential tool for dynamic earth science studies.  One of an 

attention-grabbing topic is current flow that is needed short go back satellite cycle and high resolution. These will give 

exactly data concerning current dynamic flow (Marghany  2000 and Krieger et al., 2003). In fact, current is very 

important for ship navigation, fishing, waste matter substances transport and sediment transport. Respectively optical 

and microwave sensors are enforced to monitor the current flows.  Indeed, the ocean surface dynamic options of sea 

surface current is vital parameters for atmospheric-sea surface interactions. In this regard, the global climate change, 

marine pollution and coastal risky are preponderantly dominated by current speed and direction (Alejandro and 

Saadon 1996; Alejandro and Demmler 1997; Inglada and  Garello 2002 ).  The measurements of ocean current from 

space relies on the electromagnetic signal. Truly, associate degree of an electromagnetic signal of optical and 

microwave  reflects from the ocean carrying records concerning one among the first discernible quantities that are the 

colour, the beamy temperature, the roughness, and also the height of the ocean (Inglada and  Garello 2002 and 

Romeiser et al., 2010). 

 

The principal conception to retrieve the ocean surface current from SAR information is perform of the Doppler 

frequency shift theory (Marghany 2009a). Incidentally, the orbital quality of the ocean wave and surface current 

dynamic interactions will cause shifting of the radiolocation signal within the angle direction i.e. the flight direction 

that is thought because the Doppler frequency shift (Cao and Wang  2003). In truth, the surface current dynamic is 

virtual to the orbital movement and an antenna rotation of the synthetic aperture radar. Consequently, the Doppler 

frequency shift, reckon the SAR antenna angle of view that is virtual to the orbital mechanical phenomenon rotation 

(Marghany 2009 b and Marghany 2011a). Consequently, the connection between the ocean surface dynamic orbital 

movement and also the SAR satellite orbital motion would be nonlinear attributable to the Doppler influence (Inglada 

and Garello 2002). In literature, there are many mathematical algorithms that are supported physical models to 

retrieve ocean surface current from SAR information. On alternative words, these algorithms area unit enforced to 

map the Doppler frequency spectra into the important ocean surface current speed. However, these techniques are 

restricted attributable to the nonlinear quality of ocean surface dynamic behaviours and radar signal (Marghany 

2011a). In this regard, the Doppler rate has coarser resolution than radar cross section on the angle direction (Inglada 

and  Garello 2002; Marghany 2009b and Marghany 2011b). 

 

In this paper, we have a tendency to address the question of  retrieving ocean surface current pattern from TanDEM-X 

data. This is often verified an exploitation of neural network technique.  Hypotheses examined are: (i)  Hopfield 

neural network based mostly multi-objective optimisation via Pareto  dominance algorithmic rule is executed to 

TanDEM-X data; (ii) multi-objective optimisation via Pareto dominance is used as procedures for eliminating 



inherent speckle from TanDEM-X data; and (iii); the nonlinearity of the physicist frequency shift is reduced 

multi-objective optimisation via Pareto dominance. 

 

2. DATA  ACQUISITION  

2.1 Satellite Data  

The TanDEM-X operational consequence involves the coordinated operation of 2 satellites flying in adjacent 

configuration. The alteration constraints for the formation are: (i) the orbits ascending nodes, (ii) the angle between 

the perigees, (iii) the orbit eccentricities and (iv) the phasing between the satellites. The observance of ocean currents 

is a vital facet of assessing climate changes. Space borne SAR along-track interferometry (ATI) has the promise to 

considerably contribute to the present field. It will offer large-area, world-wide surface current measurements. The 

matter of mapping relatively low velocities are often resolved by formations of SAR satellites that yield sufficiently 

sensitive ATI measurements (Romeiser and Runge 2007 and Romeiser et al., 2014). 

 

In this study, the Hopfield algorithm relies on the TanDEMX information. The TerraSAR-X and TanDEM-X 

satellites transmit identical SAR instruments working at 9.65 GHz frequency (X-band). Throughout some devoted 

operations, both satellites are placed associate exceedingly in a very special orbit configuration with a brief along 

track baseline providing a probability for current measurements. The data utilized in this study were nonheritable in 

StripMap (SM), bistatic (TS-X active / TD-X passive) mode and VV polarization. 

 

 

2.2 In-situ Measurement 

 

For the surface current knowledge acquisition, the Aquadopp® 2MHz current meter factory-made by Nortek AS 

(Figure1), Scandinavian country was used. The instrumentality could be a standalone instrumentation exploitation 

Doppler based mostly technology to measure surface currents at the deployment web site. The instrumentation is 

intended with intrinsically memory and internal battery pack wherever it may be designed to record and store 

information internally for self-deployment. 

 

 
Figure 1. Aquadopp 2Mhz current meter deployment. 

 
The  Aquadopp® 2MHz current meter was deployed on coastal water of Teluk Kemang, Port Dickson, Malaysia on 

May 6 2017. (Figure 2). Two phases of data collection were carried out: (i) at 6:15 am to 8:15 am and (ii) at 6:15 pm 

to 8:15 pm. The surface current data was measured for intervals of 2 hours  for both phases. 

 

 

Figure 2. Geographical location of in situ measurements “  “. 

3  HOPFIELD ALGORITHM                     
 

Marghany (2015b) have implemented Hopfield neural networks for RADARSAT-2 SAR data to retrieve sea surface 

current. This section has been retrieved from Marghany (2015b) work. Therefore, Hopfield neural networks is used 

with TanDEM-X data. Consistent with Côté and Tatnall (1997), Hopfield neural networks is considered as a 

promising method for determining a minimum of energy of function. For instance, motion analysis and object pattern 



recognitions might be coded into an energy function (Marghany 2004). Furthermore, the actual physical constraint, 

heuristics, or prior knowledge of sea surface features, nonlinearity and the Doppler frequency shift (Marghany 2009a) 

can be coded into the energy function.  

 

 A pattern, in the context of the N node Hopfield neural network is an N-dimensional vectors ),.......,( 21 nvvvV =  
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Hopfield net associates a vector from S with an exemplar pattern in E.  

 

Following Marghany (2009b),  Hopfield net is involved that jiij ww = and 0=iiw . Succeeding, Cao and  Wang, 

(2003), the propagation rule iτ  which defines how neuron sates and weight combined as input to a neuron can be 

described by 
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The Hopfield algorithm has consisted of (i) assign weights to synaptic connections; (ii) initialize the net with 

unknown pattern; and (iii) iterate until convergence and continue features tracking (Cote  and Tatnall, 1997). First 

step of assign weight ijw  to synaptic connection can be achieved as understands: 
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Hopfield neural network could be identified current pattern features by mathematical comparing to each other in order 

to build an energy function (Liang  and Wang, 2000 and Arik  2002). According to Côté and Tatnall (1997) the 

difference function to determine the discriminations between different features ji ff ,  by a given formula: 
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where,
 

"L  is curvature shape of current feature, ijdis  is the distance between sea surface current features if  and jf , 

and G and H and J are constants, and  θ is an angle of orientation of local curve element. In addition, "dist  and 

"θ are the minimum acceptable distance and the maximum acceptable rotation angle, respectively before energy 

function. 

 

4. MULTI-OBJECTIVE OPTIMIZATION 

  

Following  Atashkari  et al., (2004), the Multi-objective optimization (MOB) which is also termed the  multi-criteria 

optimization or vector optimization. In this regard, it has been defined as finding a vector of decision variables 

satisfying constraints to give acceptable values to all objective functions. Generally, it can be mathematically defined 

as: find the vector 
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subject to m inequality constraints 
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and p equality constraints 
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where 
* n

S ∈ℜ  is the vector of decision or design variables, and ( ) kF S ∈ℜ  is the vector of objective functions 

which each of them be either minimized or maximized. However, without loss of generality, it is assumed that all 

objective functions are to be minimized.  
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On other words, the solution 
*

S  is said to be Pareto optimal (minimal) of  ocean current pattern if no other solution 

can be found to dominate 
*

S  using the definition of Pareto dominance. For a given MOP, the Pareto front ƤŦ٭ is a set 

of vector of objective functions which are obtained using the vectors of decision variables in the Pareto set Ƥ٭, that is 

ƤŦ٭ 1 2{ ( ) ( ( ), ( ),...., ( )):
k

F S f S f S f S S= = ∈Ƥ٭}. In other words, the Pareto front ƤŦ٭ is a set of the vectors of 

objective functions mapped from Ƥ٭ (Atashkari  et al., 2004). 

 

 

5. RESULTS AND DISCUSSION  

The TanDEM-X data with X-band of the spotlight product which  derived from the strip-map mode has utilized in this 

study. The Figure 3 indicates the results that are retrieved from Hopfield rule and Pareto rule. It is attention-grabbing 

realize that Pareto algorithmic rule has find the most effective solution for sea surface current pattern as compared to 

Hopfield neural network (Figure 3b).The morphology of ocean surface current structures are well known exploitation 

Pareto algorithmic rule. Indeed, random generation of 1000 iterations at intervals 3 min are needed to realize the 

performance of Pareto algorithmic program. Clearly, Pareto algorithm delivered spatial variation of surface current 

from onshore to offshore. Onshore surface current is dominated by maximum value of 0.12 m/s while the offshore 

surface currents have maximum value of 0.5 m/s. 

(a)                                         (b) 

 

Figure 3. Ocean current pattern simulated  from (a) Hopfield neural network result (b) Pareto optimal 

solution. 

On the word of   Mittermayer and Runge (2003), the velocity component of moving objects may be measured with 

ATI. The sensitivity of the instrument principally depends on the measuring device carrier frequency and 

consequently the effective time lag between the two measurements administered with two antennas and receiver 

chains. These parameters have to be compelled to be tailored to the speed range of the objects of interest. High speed 

objects like cars would like solely a really short time lag and also the two antennas acquired to be separated  some 

meters. 

 

Table 1 delivers the accuracy of this study.    Clearly, the Pareto optimal solution has an excellent performance than 

Hopfield algorithm, with lowest P value of 0.00006 and RMSE of ±0.009 and highest r²  of 0.86.  Consistent with 

Marghany (2015b) and Marghany and Mansor (2016), the Hopfield neural network is anticipated as optimization tool 

to reduce the impact of the Doppler nonlinearity in the SAR data. Subsequently, multi-objective optimization is fairly 

deliberated  as attaining a vector of verdict variables satisfying constraints to offer precise to all objective functions. 

This confirms study of Marghany and Mansor (2016). 

 



Table 1. Statistical regression of current meter  sea surface current and retrieved one   by  Hopfield neural 

network based Pareto optimal solution.  

 

Methods  

 

R2 RMSE (m/s)       P 

Hopfield neural 

network- Current meter 

 

Pareto optimal 

solution-Current meter 

0.78 

 

 

0.86 

 

 

 

±0.2 

 

 

±0.009 

 

0.0006 

 

 

0.000086 

 

Moreover, the multi-objective optimisation via Pareto dominance obtains a particular curve that diminishes the 

inconsistency between the certain ocean surface current from TanDEMX data and in situ measurements. In this 

understanding, the new approach supported TanDEMX data and as a result the multi-objective optimisation via 

Pareto Dominance, know how to minimalize the number of the residual faults for retrieving ocean surface current 

from TanDEMX data and delivers precise ocean surface current pattern spatial variation. This work recommends the 

work done by Atashkari  et al., (2014) and Marghany (2015b). Additionally, it is recommended to utilize the time 

series of TanDEMX data for monitoring coastal current daily and seasonal variations. 

 

6. CONCLUSIONS  

This work geared toward retrieving ocean surface current from TanDEMX data along the coastal water of Port 

Dickson, Malaysia. Two approaches are prescribed: (i) Hopfield neural network rule; and (ii) Pareto optimum 

resolution. The study shows that the Pareto optimum resolution has highest performance than Hopfield neural 

network rule with lowest RMSE of ±0.009. Further, Pareto optimum resolution can verify the ocean surface current 

pattern variation on coastal water from TanDEMX data. Last, TanDEMX data reveals a superb guarantees for 

retrieving ocean surface current with X-band. 
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