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ABSTRACT: Carbon dioxide (CO2) believed to be one of the major greenhouse gases which impact the climate 

change. Tropical forest is well known as the world’s most complex trees which embrace a large stock of carbon in 

the global carbon cycle and contributes an enormous amount of above-ground and below-ground biomass. 

Therefore, this study aims to estimate the carbon stocks prediction for tropical rainforest using geographically 

weighted regression (GWR). The predictor’s variables used in this studies is the tree height derived from the 

canopy height model (CHM) of airborne light detection and ranging (LiDAR), HTL and crown projection area 

(CPA) derived from a fusion of LiDAR and WorldView-3 (WV-3) images. This study contributes to the potential 

of linking the above-ground biomass and carbon stocks estimation and remotely-sensed data by using 

geographically weighted regression (GWR) and ordinary least square (OLS) approach. The GWR models presented 

the substantial improvement in the above-ground biomass and carbon stocks estimation and beneficial for future 

development and strategic planning of the forest resources. 

1. INTRODUCTION 

1.1 Above-ground biomass and carbon stock of tropical forest. 

Tropical forest is heterogeneous in nature with tremendously rich in biodiversity of species of living plant and 

animal which provide an important basis for the ecosystem circulation. This lead to the developing numerous 

number of vegetation indices and the radiometric characteristic in assessing the vegetation using remotely sensed 

data. The use of remotely sensed data using optical sensors fusion with the empirical models is commonly used by 

the previous studies in order to assess the AGB (Basuki et al., 2012). Numerous studies have demonstrated the 

effectiveness of using the model based on regression can give an accurate result for the estimation of AGB and 

carbon stocks at many spatial scales (Hamdan et al., 2014; Muukkonen & Heiskanen, 2005). 

However, recent studies show that there has been an increase rate of carbon over 100 times faster than anything 

ever observed in the past eight hundred thousand years (NOAA, 2016). Moreover, a huge scale study by Hansen et 

al., (2013) demonstrated an alarming rate of the increasing of forest clearing in most tropical areas over the last 

decade, with South-East Asia being ranked as one of the highest country of deforestation activity rate. Due to the 

economic influence, a lot of forests have been cleared for timber logging and broad conversion of forest to oil palm 

plantation. Subsequently, numerous habitats of living plants and animals are decreasing and this impacts the 

biodiversity of species at the forest floor (Mohd Zaki & Abd Latif, 2016). 

Remote sensing imageries are useful in the assessment the above-ground biomass and also important for carbon 

monitoring (Baccini & Asner, 2013; Gibbs et al., 2007; UNFCC, 2015). Over the past three decades, the researcher 

has become increasingly interested in exploiting remote sensing methods for above-ground biomass (AGB) 

estimation for forest biome (Lu et al., 2014). A considerable amount of literature has been published for 

investigating the relationship between remote sensing vegetation indices and spectral analysis with the AGB 

estimation (Basuki et al., 2012; Eckert, 2012; Propastin, 2012). Nevertheless, accurate estimation of AGB, carbon 

stocks and biomass variation present a challenging aspect to derive accurately the remote sensing based for tropical 

forest. Therefore, the objective of this paper includes (i) applying the model above-ground biomass and carbon 

stock prediction using GWR and OLS and (ii) produce the carbon stocks mapping using GWR and OLS. 



 

 

1.2 Spatial relationship for the tree variables using GWR and OLS. 

Spatial statistics in ArcGIS was used to model the spatial pattern, distribution and relationship using technique 

space and area, length or spatial relationship (Scott & Janikas, 2010). Several steps need to be done before generate 

the GWR is the exploratory regression and ordinary least square (OLS). These steps can provide the trustworthy 

results of any estimation application but it also depends on the situation of data or the thing to be model. The first 

steps before OLS analysis generation are by using exploratory regression to identify the find the potential 

parameters if there have a ton of variables that are trying to be the model. Moreover, the analysis provides by this 

regression including the criteria such as Adjusted R
2
, coefficient p-values, Variance Inflation Factor (VIF), Jarque-

Bera p-values and spatial autocorrelation p-values (Esri, 2013). In order to predict or understand the incident or 

something is happening, the dependent variable (y) must be set up and known. Then, followed by the explanatory 

variable or independent variable (x) which is should be two or more variables so that the OLS can analyse the 

relationship between the selected variables (Esri, 2013). The system computed OLS regression tool for those 

parameters and formed a coefficient value that shows the strength of the relationship between dependent and 

independent variables. 
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Where Y is the dependent variables, Bn is the coefficients, Xn is the explanatory variables and ϵ is the random error 

term or residuals. In contrary, GWR is a local model and the output result was generated to fit the model equation 

for each of the dataset (Esri, 2013). Therefore, every of the spatial feature has their own model equation. GWR was 

a tool that improved and explored the fit model equation by OLS analysis. It is a platform for visualization on 

something that we are predicted. Besides that, the model development is the key to the analysis which is can define 

the neighbourhood. The output including coefficient estimated, local R² and standard residual instead of predicted 

value. However, GWR is not consistent to differentiate whether the data generating is stationary or no stationary. If 

there has multicollinearity data in the estimated coefficient, it may have biased in GWR result.  

2. STUDY AREA AND DATASET 

2.1 Geographical Background 

The research was conducted in a forest managed by University Putra Malaysia, Ayer Hitam Forest Reserved, 

Selangor State, Malaysia. The forest lies between Latitude 3°00'24.19"N, Longitude 101°38'25.24"E, the location 

of the study area is illustrated in Figure 2. The type of this forest is lowland Dipterocarp forest. It comprises of 

various species dominated by the family from Dipterocarpaceae, followed by family Euphorbiaceaea as a second 

major family species. The average rainfall occurring on average of 2178 mm annually while the humidity reach 

74% and the average temperature is 27.7 º C minimum and 22.9 º C maximum (Ibrahim, 1999). Topographically 

the terrain slope is characterized as undulation up to 34º and the altitude that comprise in this lowland forest varies 

from 15m to 233 height (Shida et al., 2014). 

 
Figure 2. Location of the study area                                               



 

 

2.2 LiDAR Data Acquisition 

The Light Detection and Ranging (LiDAR) data had been used in this dissertation were acquired in August 2013. 

The sensor used in this mission is by using LITEMAPPER-5600 that consists of RIEGL LMS-Q560 Laser Scanner. 

This equipment allows an airborne scanning laser to penetrate the distance between the aircraft and the ground and 

produce the precise digital surface models. The LiDAR system was mounted on board of aircraft, fixed with the 

real-time kinematic (RTK) survey that will provide the differential position of the aircraft and equip with the 

Inertial Measurement Unit (IMU) for the orientation of the aircraft which is a roll, pitch, and bearing. The 

differential correction signal will give the exact location from the base station at known coordinate. The altitude of 

the flying height was 1000 m above the ground level using the flying speed 90 knots. With the capacity of laser 

swath width of approximately 1155m was measure for every flight line, the pulse repetition frequency that had bet 

set during the LiDAR observation is 150 kHz (150, 000 pulses per second) in order to generate more number of 

return. The laser scans at 160 lines per seconds and the laser scan angle fixed minimum at 46º and maximum at 60º 

while the image scan angle at 45º. The LiDAR data had been classified into different classes according to the 

ASPRS and ICSM standard specification in order to filter the ground and vegetation (ASPRS, 2013; ICSM, 2010). 

Using the Terra Scan, in Bentley Microstation software, the macro tools were used to generate the classification. 

The point clouds contains the (X, Y, Z) of the coordinates of the laser point, a number of return, intensity, scan 

direction, the edge of flight line, user data, point sources ID, GPS time, classification, scale factor, offset to point 

data and the scan flight direction. 

A very high resolution satellite imagery used in this study WorldView-3 is provided by commercial company main 

in Colorado, United States which is known as Digital Globe. WorldView-3 is the first multi-payload, super spectral 

and high resolution commercial satellite which had been launch in 2014 (DigitalGlobe, 2014). It has an average 

revisit time of less than one day with capabilities of collecting about 680,000 km
2
 per day (DigitalGlobe, 2014). 

This imagery comprises of 8-bands, which is 4 standard VNIR colours: blue, green, red, near-IR2, 4 added VNIR 

colours: coastal, yellow, red edge and near-IR2, 8 SWIR bands: penetrates haze, fog, smog dust and smoke and 12 

CAVIS bands, but in this research only use 8 bands multispectral imagery for the purposes of studies. 

2.3 Ground Data Collection 

The above-ground biomass and carbon stocks was estimated using model allometric equation developed, Equation 

2 model. This equation was developed using a regression analysis of 245 of trees with a diameter ranging from 10 

to 113 cm and consisting of 112 species. The equation to estimates the above-ground C stocks was: 

                                            ˆ   4.092  0.898   2.073   0.058  Lln C ln HT ln DBH ln CPA                                            (2) 

Where C = carbon stocks (kg / tree), HTL = Height derived from LiDAR, CPA = Crown projection area and DBH = 

diameter at breast height. The adjusted R
2
 of the model is 0.951. The carbon stocks conversion that had been used is 

0.47 which had been suggest by the International Panel on Climate Change (IPCC) (IPCC, 2006). The above-

ground C stocks was obtained by transforming ln C stocks values. The descriptive statistic of the above-ground C 

stocks of the individuals trees for training and validation data are presented in Table 1. 

Table 1. Descriptive statistics of the above-ground C stocks (kg tree
-1

) for the training (166 of trees) and the 

validation (79 of trees) data. 

C stocks (CS) in kg Training samples (166 of tree) Validation (79 of trees) 

Minimum 15 26 

Mean 359.090 354.734 

Maximum 8068 2503 

Standard deviation 702.011 458.74 

 

2.4 Object based image segmentation (OBIA) tree crown delineation 

Starting with the convolution filter, the processed is to assure the image has a smoothly view for interpreting the 

shape of the tree crown. After that, the WV-3 image had been segmented using the scale 50, shape 0.8 and 

compactness 0.5. Accordingly, to the result, these three factors had a relationship toward another that will affect 

how the tree crown could be delineated.  But actually, it was undertaken several times at different level in order to 



 

 

get the suitable crown shape for this research. Next, the shadow should be masked out from the image to remain 

only tree crown for carbon stock estimation. It was a processed defining the suitable range of image brightness 

which is the shadow has been masked out at the range between 46 until 182-pixel value while the value more than 

182 considered as the crown shape. Then, the watershed transformation is a processed to split or separate the image 

object from an overlapping tree crown into individual tree crown (Karna et al., 2013; Mohd Zaki et al., 2015). It 

was applied in this study to improve the image segmentation. According to (Belaid & Mourou, 2009), the 

watershed transformation is suitable and very useful to use for image segmentation because this processed always 

provides closed contours and requires low computation times to compare with another segmentation method. Last 

but not least, the tree crown can be defined much better after morphology processed which is refining and reshaping 

the boundaries of the segmented result. The tree crown look clearer and beautiful as nearly similar as in the image. 

Then, the tree was classified either it was a short or tall tree by using CHM data and then both of crown layer will 

be export to the shapefile (.shp) format for carbon stock modelling and mapping in ArcMap 10.3. 

 

Figure 3. Result of tree crown delineation (a) image after multi-resolution segmentation process (b) shadow 

masked out from the image (c) image after morphology and (d) image classification of short and tall trees 

 

3.0 RESULTS AND DISCUSSION 

There were 240 individuals trees had been examined at this stage by using the Model 1 equation, carbon stocks 

estimation as dependent variables. Using the data generated from the study area, NDVI, IPVI, WV-VI,WV-BI, 

EVI, OSAVI, DVI, RVI, NIR/GREEN, GRVI, PCI, CPA, HTL and reflectance 1 to 8 bands were tested as 

explanatory variables to the carbon stocks estimation. Using spatial statistics tools in ArcGIS (Arc Toolbox), the 

vegetation indices, reflectance value was calculated in related to the above-ground biomass and carbon stocks 

estimation for the study area.  

There are 21 explanatory variables from remote sensing variables to execute the outputs. For the initial stage, the 

large VIF with (VIF > 7.5) values was removed and the OLS were run again. There are several assumptions of 

using the GWR and OLS in ArcGIS: 

1. There is an asterisk (*) sign next to the number shows that there is a statistical significance (p < 0.05). 

2. The rule of thumbs of the Variance Inflation Factors (VIF) is the explanatory variables related to the VIF values 

larger than 7.5 will be removed. 

3. R
2
, adjusted R

2
 and Akaike’s Information Criterion (AIC) used to measure the model performance. The value of 

R
2
 ranges from zero to hundreds in percentage (%). 



 

 

4. The model significance of Joint-F Statistics and Wald-Statistics denotes that if the asterisk (*) exists, indicates 

that the overall model was significant. In the OLS, if Koenker (BP) statistic (f) is statistical significance, the Joint 

Wald Statistic will be used to determine the overall model significance. 

5. The Koenker (BP) Statistic or also known as Koenker’s studentized Bruesch-Pagan statistic is a test to evaluate 

whether the explanatory variables in the model have a consistent relationship to the dependent variables in term of 

geographic and data space. In order to determine the coefficient significance, one ought to rely on the Robust Pr 

reading column whether significant or not. 

6. The Jarque-Bera statistic indicates the residuals are normally distributed or not. When the test is statistically 

significant, model distribution is not normally distributed.  

7. Spatial autocorrelation of the residuals using Moran’s I to ensure that the data equally random. 

The first test examined the explanatory variables (Height from LiDAR) HTL and CPA by using dependent variables 

above-ground carbon stocks from Equation 2. The results show that all the explanatory variables were statistically 

significant with adjusted R
2
 value was 0.690 with Koenker (BP) test significant. The overall model was significance 

with Wald Statistic and Robust_Pr was used to evaluate the coefficient significant.  

Nevertheless, the Jarque-Bera statistic shows that the residuals were not statistic normally distributed (p < 0.05). 

Therefore, the spatial auto-correlation (Morans I) need to run to ensure that the regression residuals are spatially 

random distributed. In the auto correlation report in Morans I summarized that the p-value 0.272 and z-score is 

1.0995 which is not statistically significant, so the null hypothesis of complete spatial randomness had been 

accepted. This indicates that the regression residuals are randomly distributed. The CPA and HTL of OLS results 

reacted confidently to the above-ground carbon stocks estimation by using the dependent variables from Equation 

2. The maximum cut-off value of the VIF is must be less than 7.5, and the value showed that there are no multi-

collinearity exist as the value of VIF shown as 1.436 which is acceptable. 

Table 2. Remotely-sensed above-ground carbon stocks using ArcGIS OLS 

Variables Coefficient Standard 

error 

T-

Statistic 

Probability Robust 

SE 

Robust t Robust Pr VIF 

Intercept -882.795 79.822 -11.060 0.000000* 113.496 -7.778 0.000000* - 

HTL 39.468 4.346 9.082 0.000000* 7.429 5.313 0.000000* 1.436 

CPA 12.956 1.019 12.713 0.000000* 4.287 3.022 0.000000* 1.436 

 

Table 3. Remotely-sensed above-ground carbon stocks using ArcGIS OLS diagnostic 

Number of Observations 240 Dependent variable Equation1 (Carbon stock) 

Degree of Freedom 237 Akaike’s Information Criterion (AICc) 3414.698 

Multiple R
2
 [3] 0.692 Adjusted R

2
 0.690 

Joint F Statistic 266.629 Prob(>F), (2,237) degrees of freedom: 0.000000* 

Joint Wald Statistic 94.382 Prob(>chi-squared), (2) degrees of freedom: 0.000000* 

Koenker (BP) Statistic 79.333 Prob(>chi-squared), (2) degrees of freedom: 0.000000* 

Jarque-Bera Statistic 4489.694 Prob(>chi-squared), (2) degrees of freedom: 0.000000* 

 

The second test examined the explanatory variables of  NDVI, IPVI, WV-VI,WV-BI, EVI, OSAVI, DVI, RVI, 

NIR/GREEN, GRVI, PCI, REF 1-8 and HTL by using dependent variables above-ground carbon stocks from 

Equation 2. The results show that out of the 20 explanatory variables, only two variables are significant (p < 0.05) 

against dependent variables carbon stocks from Equation 2, which is HTL  and Reflectance band 5 which indicates 

by an asterisk (*) sign at the Joint-F statistic and Wald- statistics. However, the explanatory variables of vegetation 

indices and reflectance imagery did not improve the carbon stocks estimation and display the moderate value of R
2
 

which is 0.49. The VIF value also high for the variables Ref_B2 and Ref_B5 and more than 10 which is not 

acceptable as the multi-collinearity exist. 



 

 

 

Figure 4. Above-ground carbon stocks prediction by using OLS and GWR in ArcGIS. 

The Geographically Weighted Regression (GWR) is a local regression analysis that also contains dependent and 

explanatory variables. GWR can generate a hundred features of data set for the better result but this tools not 

working with multipoint or redundant data. In this research, GWR is using after generate the OLS analysis to see 

such as the intercept, probability value, residual and VIF value for the selected model. The final output of GWR 

according to the shape and extension of bandwidth corresponding to the user input the independent variable. The 

result of GWR gives the predicted value of carbon stock estimation as well as local R²,a  coefficient intercept of 

each variable, standard error, and standard error intercept. 



 

 

 
 

Figure 5. Scatter plot of predicted and observed carbon stock 

 

Based on Figure 5, demonstrated the validity of the predicted (GWR results) against observed dataset (Equation 2) 

by using analytic methods. The scatter plot shows that R² = 0.921 which is the strong relationship between 

observed and predicted carbon stock. Therefore, these two variables, CPA and HTL are confident can be used to 

estimate carbon stock for the wider area of tropical forest. 

 

4. CONCLUSION 

The study demonstrated that the advancement of remote sensing technologies nowadays helps to reduce the time 

and cut the cost of hiring the manpower for the forest inventory data collection. The combination of LiDAR data 

and Worldview-3 imagery was suitable for estimate carbon stock in the tropical rainforest. This research also 

proved the use of remotely sensed data can estimate and mapping the carbon stock for tropical rainforest by using 

GWR at AHFR. Particularly, the approach of OLS analysis and GWR tool give the best model equation for any 

incident or something that we need to predict. Height variables of tropical forest have potential to be used as one of 

the most important predictors for studying above-ground biomass and carbon stocks. More detailed work needs to 

be carried out in the future studies focus on monitoring changes of the height for the analysis of the emergent and 

canopy layers of the tropical forest. With the absence of field data inventories of the tree details, these model can 

fill in the gaps by deriving spatial input to the model, applying the model for tropical forest estimation by using 

remote sensing which will benefit the forest management and monitoring purposes. This research has identified the 

potential of linking the above-ground biomass and carbon stocks estimation and remotely-sensed data and 

beneficial for future development and strategic planning of the forest resources. 
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