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ABSTRACT: 
 
Image processing techniques in transform domain are useful tools for combining several correlated variables into a single variable. 
The process of decomposing the image into uncorrelated independent components increases the accuracy and reliability of producing 
surface sections of the area mineral alterations. Ardestan is located in NW-SE direction of central Iranian volcanic belt that hosts 
many well-known porphyry copper and gold deposits. In this paper, performance of independent component analysis (ICA) has been 
evaluated in the identification of the anomalies associated with Cu, Au and Fe mineralization using ASTER satellite imagery and 

geochemical data. First of all, multi-fractal inverse distance weighted (MIDW) was developed and applied to make raster maps 
related to Copper (Cu), Gold (Au) and Iron (Fe) that were combined later. ICA components were then used to identify Iron oxide and 
hydrothermal alteration zones in the visible and near infrared (VNIR) and shortwave infrared (SWIR) subsystems of ASTER data. 
For this purpose, this research investigated the major absorption wavelengths of the indicator minerals. The results show that the 
argillic alteration zone detected by applying ICA are mostly located near the Marbin Rengan and Kacho Mesqal-Gerian faults around 
the geochemical anomalies. The situations of identified hydrothermal alteration zones indicate that surface sections in the study area 
contain porphyry copper and gold deposits. According to geochemical anomalies obtained by MIDW method, detected promising 
areas of Iron oxide and hydrothermal alteration zones, match precisely with the locations of Intrusions of diorite and monzonite into 

the igneous lithological units between marbin rengan and Kacho Mesqal-Gerian faults. 

 

  

1. INTRODUCTION  

 

Remote sensing instruments can provide detailed information on the mineralogy and geochemistry of the rock types 

comprising the Earth's surface, particularly for remote areas in arid or semi-arid environments that are difficult to 

access. Therefore remote sensing can be effective in reducing costs in large areas compared to methods such as 

geochemical extraction and analysis (Abulghasem et al., 2012; Zhang et al., 2007).  

NW-SE trending Central Iranian Volcanic Belt is an area with high copper mineralization, therefore it has huge 

potential for discovering porphyry copper deposits. Ardestan that is study area in the current research is located in 

Central Iranian Volcanic Belt. The argillic and propylitic alterations are important signs for investigating the situation 
of porphyry copper and gold deposits. Different rock compositions cause the variations of outer propylitic zone in the 

Earth, however epidote, chlorite, and carbonate minerals are common constituents. Kaolinite, muscovite and alunite 

minerals reveal protrusion of middle argillic zone (Karimpour and Saadat, 1989; Mars and Rowan, 2006). Nowadays, 

one of the best methods for regional mapping of Iron oxide and hydrothermal alteration zones is using the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER). ASTER satellite images are useful for geological 

mapping and mineral resources exploration in vast study areas (Amer et al., 2016; Hashim et al., 2010; Pour and 

Hashim, 2011; Pour and Hashim, 2012; Pour et al., 2015). This sensor distinguishes the alteration zone from other 

minerals due to the multispectral coverage at high spatial resolution and the distinct and significant spectral features of 

minerals in shortwave infrared (SWIR) and thermal infrared (TIR) regions of the EM spectrum (Amer et al., 2016; Mars 

and Rowan, 2006; Pour and Hashim, 2011; Pour et al., 2015). 

The results of studies on image processing techniques of multivariate analysis have illustrated that Independent 
Component Analysis (ICA) is a useful tool for combining several correlated variables into a single variable and, thus, 

for reducing the dimensionality of datasets into independent uncorrelated components based on covariance or 

correlations of variables, which represent the inter-relationships among the multi-dimensional variables (Hyvärinen et 

al., 2001; Pour et al., 2015; Stathaki, 2011).   

Geochemical mapping is an important tool in mineral exploration (Zuo, 2011). This study collected stream sediment 

samples, for the determination of 46 elements, at a density of 4 samples per 10 square kilometer of the area. Statistical 

processing is widely applied to identify geochemical anomalies. For this purpose, the multifractal inverse distance 

weighted method (MIDW) supported by Geographic Information System (GIS) techniques is successfully used to 



analyze geochemical data for Cu, Fe, Au and Mn elements. ICA is used to combine the concentration values of these 

elements. The results demonstrated the major anomalies locations in the geological map. 

The results of investigation in Gangdese Belt Tibet of china used the principal component analysis (PCA) to combine 

the Cu, Pb, Zn and Ag concentration values that obtained by multifractal inverse distance weighted (MIDW) (Zuo, 

2011). The results of recent studies have shown that ICA is an extension of PCA technique that find  components which 

are statistically independent rather than uncorrelated; thus, it requires statistics of orders higher than the second (Lee et 

al., 2000).  The study conducted in southern Masule in Iran using ETM+ image showed that applying ICA 
transformation led to the sampling program in finding unknown lithology and dikes (Gholami et al., 2012). In this 

paper, firstly the ICA transformation is used to map spatial distribution of Iron oxide, propylitic and argillic zones and 

distinguishing them from bedrocks in ASTER image to identify the section with the possibility of exploring copper 

deposit. Secondly, ICA are applied in raster maps of MIDW for Cu, Fe, Au and Mn geochemical elements to obtain the 

combination of major geochemical anomalies. Accordingly, the results of remote sensing and geochemical studies are 

compared with each other. 

 

2. DATA ACQUISITION 

 

 2.1 Study area  

 

The study area of Ardestan is located in 52° 0′ 0.00″ to 52° 30′ 0.00″ Easting, 33° 0′ 0.00″ to 33° 30′ 0.00″ Northing, 

NW-SE trending Central Iranian Volcanic Belt that mostly consists of volcanic pyroclastic rocks related to the Eocene 

and Oligocene geologic epoch in a geologic period of Paleogene. The most important intrusion in the study area is the 

intrusions of diorite and monzonite located in Dorojin mountain and Marbin village.  

Outcrops belong to volcanic activity of post-Eocene and pre-Eocene era that are a combination of calc-alkaline and 

contains of rhyolite, dacite, andesite and basaltic andesite minerals. Figure 1 shows the geological conditions of this 

study area. 

 

2.2 ASTER Satellite Data  

 

The Aster image used in this study had been already pre-processed and geo-referenced to UTM zone 39N projection 

system with the WGS-84 datum. Crosstalk effect is an error in 4, 5 and 9 bands of ASTER images that causes the 

deviations from correct reflectance in false absorption features and distortion of diagnostic signatures in bands detectors 
on the shortwave infrared subsystem. As a result, the next processing will face the problem of identifying the wrong 

material (Pour and Hashim, 2012) . Crosstalk correction was applied on ASTER SWIR bands in this paper. The 

recommended IARR reflectance technique preferred for atmospheric correction because it does not require the prior 

knowledge of collected samples from the field (Pour and Hashim, 2011) 

 

2.3 Geochemical data 

 

The analysis of geochemical pattern that presented by the empirical density distributions is inadequate for separating the 

anomalies. Statistical analysis flaw for these exploration data sets is incomplete samples of geochemical landscape of a 

study area. Self-similarity and independence of scale in geochemical data property help to improve models of 

geochemical anomalies. This will not be achieved except with considering the both of spatial correlation and variability 

of geochemical data and the geometry and scale-independent properties of geochemical landscapes together (Carranza, 

2008; Hassani Pak and Sharafodin, 2005). The fractal nature of geochemical patterns makes a relationship between 

fractal dimension and geochemical anomalies. The presence of geochemical anomalies increases the fractal dimension 

of geochemical variables. Generally, exploration data have wide range of quantities and a particular quantity rarely 

recurs. Therefore, for statistical analysis of geochemical raw data, it is necessary to classify them into optimum number 

of classes in order not to lose details. The number of classes must not be lower than . In this study the Sturge's Rule 

is used to estimate the range of classes. This rule is expressed by the following equation (Hassani Pak and Sharafodin, 

2005): 

 

Xmax and Xmin are maximum and minimum of geochemical data and n is the number of data equal to the number of 

geochemical model cells. 



 
Figure 1. Geological map of Ardestan region (Produced by Geological Survey & Mineral Exploration of Iran) 

 

 

3. METHOD 

 

 3.1 ICA 

 

One of the important criteria of ICA transformation techniques is statistically independence of the transform 

coefficients. As a result, ICA can identify statistically independent basis vectors in linear generative model (Stathaki, 

2011). This transform is based on the non-Gaussian assumption of the independent sources, and uses higher-order 

statistics to reveal desired features. ICA transformation can distinguish features of interest even when they occupy only 

a small portion of the pixels in the image that may be buried in the noisy bands of PC rotation during data whitening 

(Hyvärinen et al., 2001; Stathaki, 2011). 

 

 3. 2. Multifractal inverse distance weighted method  

 

Inverse distance weighting is one of the simplest methods of weighted moving averages that is inversely proportional to 

the square of the distance from center of the zone of influence. While IDW implementation method is straightforward, 

the determination of the weights is based only on the location and ignores the variance of the values. The common 

disadvantage of IDW is ignoring the local properties of data. Multifractal method tries to incorporate local singularity 

into the basic model of IDW interpolation.  

 



3.3. Concentration-area fractal 

 

The concentration area fractal method can be used to separate geochemical anomalies from background. In this method, 

for series of values obtained from modeling geochemical samples, the values v and the areas of uni-element 

concentrations equal to or greater than v or the areas set of cells with equal value have multifractal properties according 

to the following power-law relation.  

A(≥v)  v
-  

The exponent  is the slope of a straight line fitted by least squares technique through a log-log of the relation. The 

concentration-area relation shows multifractal properties by at least two straight lines fitted to the log-log plot. 

Consequently, the break in slope of straight lines can be used to distinguish different ranges of v, that mean the presence 

of different populations in the probability density distributions and spatial distributions of a data set of uni-element 

concentrations. Studies have shown that the straight line with more slope representing chemical anomalies. 

 

3. RESULTS AND DISCUSSION 

 

The ICA image processing technique in transform domain indicated the distribution of iron oxides in the VNIR 

subsystem and hydrothermal alteration mineral zones associated with porphyry copper mineralization identified and 

discriminated based on distinctive shortwave infrared (SWIR) properties of the ASTER data in a regional scale. Iron 

oxide minerals have low reflectance and higher reflectance in bands 1, 2 and band 4 of visible and near infrared of 

ASTER data (Pour and Hashim, 2011). Minerals associated with argillic alteration such as kaolinite, alunite and 

muscovite show distinctive absorption in bands 5, 6 and 7. Propylitic alteration revealed by chlorite calcite and epidote 

has maximum and minimum absorption in bands 5, 6 and bands 8 and 9, respectively. Iron oxides and minerals of 

argillic and propylitic alterations can be mapped as bright pixels in ICA2, ICA3 and ICA6, respectively.  
Figure 2A showed RGB color composite of ICA 2, 3 and 6 components for demonstrating the alteration of porphyry 

copper deposits in ASTER data. The purple and pink color indicates the presence of iron oxide and dark blue and bright 

blue color indicates the argillic and propylitic alteration zones, respectively. Anomaly of Iron oxide and hydrothermal 

alteration zones in bands 2, 3 and 6, have been separated with thresholds 1.7, -1.3 and 1.3, respectively (Figure 2B). 

According to the  geochemical reports used  in this paper, among 959 geochemical samples used for identification of 45 

types of minerals, , only Cu, Fe, Au and Mn are studied in the current research at a density of 4 samples per 10 km2 in 

2582.652 km2 of the desired area. Figure 3 depicts the distribution of points in the region. These choices are due to the 

importance of minerals in identifying areas with high mineral potential. The statistical parameters of non-normal data 

distributions for these elements are indicated in table 1.  

In this study, there are three steps in analyzing geochemical data for each element.  

1. Applying IDW method to generate a network of interpolated values for the entire region.  

2. Classifying geochemical data obtained by IDW model to draw a logarithmic curve of concentration-area.  

3. Generating MIDW model based on variation of the fractal dimension obtained from the logarithmic curve. 

 



 

 
 

 
Figure 3. Distribution of situation of geochemical samples in the study area (Ardestan) 

Figure 2. A) RGB color composite of  ICA 2, 3 and 6 components for demonstrating Iron oxide and hydrothermal 

alteration zones. B) ICA band 2,3 and 6 with anomalies have been isolated by applying the thresholds to the related 

bands (ICA 2, 3 and 6). These figures are showed in UTM zone 39N projection with the WGS-84 datum. 

A B 



Table 1. Descriptive statistics of stream sediment geochemical samples. 

 

  Cu Fe Au Pb 

Number of samples 959 959 959 959 

Mean 33.64 4.224 0.001 1008.43 

Std. deviation 21.761 0.45 0.0004 143.126 

Median 31.9 4.21 0.0009 992 

Mode 32.8 4.45 0.0007 953 

Range 264 8.78 0.0172 3895 

Variance 473.54112 0.2025 1.60E-07 20484.93 

Skewness 7.014 0.769 9.511 5.51 

Maximum 277.1 10.54 0.0174 4414 

Minimum 13.1 1.76 0.00016 519 

Threshold 91.93 5.123 0.0019 67.558 

 
The areas enclosed with the thresholds are obtained with MIDW. The threshold occurs in variation of the fractal 
dimension. Figure 4 shows the raster maps of the distributions of Cu, Fe, Au, and Mn created by the MIDW 

interpolation in Arc GIS and MATLAB software. The threshold and range of anomaly for each element are consistent 

with the results of statistical analysis.  

 



 
Figure 4. The raster maps of the distributions of Cu, Fe, Au, and Mn created by MIDW 

 

The value of Cu, Fe, Mn and Au samples are classified into 24, 22, 22, and 24 ranges, respectively. The log-log plot of 

these elements indicates the significant fractal dimension in ranges [33.69 , 173.69], [5.161 , 7.960], [1127.2 , 1999.9] 

and [0.0027 , 0.077] (green line in log-log plot of Figure 5). These ranges of mineral anomalies for Cu, Fe and Mn are 

divided into smaller classes due to the large range of possible anomalies.  



 
Figure 5. log–log plots (concentration-area) of Cu, Au, Fe and Mn 

 

As shown in the Figure 5, the log-log plot of new classes with red color shows a fractal behavior. The observed 

oscillations in the red curve indicates the presence of multiple populations in the large range of possible anomaly with 

the maximum variations of slope in the curve, that can be created due to influence of various geological events or 

processes. 
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Figure 6. A) ICA1 mage with maximum eigenvalue has correlation with Cu, Au and Mn MIDW images greater 
than other components. B) The appearance of the anomalies match with the position of the main faults and 

igneous rocks of the study area. 



The first independent component accounts for 73.6% of the total variance in the multivariate data. The eigenvectors 

show that Cu, Au and Mn are the most important contributors to the first independent component. The anomaly map 

(Figure 6A) shows an NW-SE trend that is located in central part of the Ardestan matching precisely with the location 

of mineralized zones of the region referred in geological report. The limited area of anomaly obtained by ICA1 method 

shows that values of integrated anomalies of Cu, Au, Fe and Mn occur in proximity and orientation of fault in intrusive 

rocks near igneous units (Figure 6B). 

 

4. CONCLUSION 
 

Recent geological studies suggest that Central Iranian Volcanic Belt hosts many well-known porphyry copper deposits. 

In this paper, the ICA transformation technique and spectral features of minerals were used for the Iron oxide and 

argillic and propylitic alteration zones mapping. The exploration indicator minerals from image processing of ASTER 

data are located aligned with the direction of the faults and surrounded by the igneous units. The results of Multifractal 

interpolation of Cu, Au, Fe and Mn associated with porphyry copper and gold deposits show the location of 

geochemical anomalies between marbin Rengan and Kacho Mesqal-Gerian faults in Ardestan region. Finally, the 

following conclusions are obtained from remote sensing data processing and geochemical analysis: 

1. The ICA method is a useful tool for integrating multi-element concentration values for exploration the 

geochemical anomaly related to investigated mineral.  

2. The ICA method can be assumed as an applicable and efficient method for extraction of mineral alteration 

from igneous lithological units. 

3. The integrated anomalies of Cu, Au, Fe and Mn occurring between Marbin Rengan and Kacho Mesqal-Gerian 

faults in the intrusive rocks of the NW-SE trend center part of Ardestan, should be further investigated in the 

next phase of mineral exploration. 

4. Processing of remote sensing imageries can be used to identify the location of zones with high potential of 

porphyry copper deposits. It is useful from an economic point of view to identify the appropriate area for 

geochemical studies. 

 

REFERENCES 
 

Abulghasem, Y.A., Akhir, J.B.M., Hassan, W.F.W., Samsudin, A.R., Youshah, B.M., 2012. The use of remote sensing 

technology in geological investigation and mineral detection in Wadi shati, Libya. Electronic Journal of Geotechnical 
Engineering 17, pp. 1279-1291. 

Amer, R., El Mezayen, A., Hasanein, M., 2016. ASTER spectral analysis for alteration minerals associated with gold 

mineralization. Ore Geology Reviews 75, pp. 239-251. 

Carranza, E.J.M., 2008. Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier, pp. 86. 

Gholami, R., Moradzadeh, A., Yousefi, M., 2012. Assessing the performance of independent component analysis in 

remote sensing data processing. Journal of the Indian Society of Remote Sensing 40, pp. 577-588. 

Hashim, M., Pour, A.B., Marghany, M., 2010. Characterization of ASTER data for mineral exploration. international 

remote sensing & gis conference and exhibition. 

Hassani Pak, A., Sharafodin, M., 2005. Exploration data analysis. Tehran University, Iran (in Persian), pp. 446-448. 

Hassani Pak, A., Sharafodin, M., 2005. Exploration data analysis. Tehran University, Iran (in Persian), pp. 6-12. 

Hyvärinen, A., Karhunen, J., Oja, E., 2001. Independent Component Analysis. Finland Neural Networks, 13(4-5), 

pp.411-430. 
Karimpour, M., Saadat, S., 1989. Applied economic geology. Javid Publication, Mashhad, Iran, pp. 179-197. 

Lee, T.-W., Girolami, M., Bell, A.J., Sejnowski, T.J., 2000. A unifying information-theoretic framework for 

independent component analysis. Computers & Mathematics with Applications 39, pp. 1-21. 

Mars, J.C., Rowan, L.C., 2006. Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, 

using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator 

algorithms. Geosphere 2, pp. 161-186. 

Pour, A.B., Hashim, M., 2011. Identification of hydrothermal alteration minerals for exploring of porphyry copper 

deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences 42, pp. 1309-1323. 

Pour, A.B., Hashim, M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold 

deposits. Ore Geology Reviews 44, pp. 1-9. 

Pour, A.B., Hashim, M., Pournamdari, M., 2015. Chromitite Prospecting Using Landsat TM and Aster Remote Sensing 
Data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2, pp. 99. 



Stathaki, T., 2011. Image fusion: algorithms and applications. Academic Press, pp. 90-91. 

Zhang, X., Pazner, M., Duke, N., 2007. Lithologic and mineral information extraction for gold exploration using 

ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing 

62, pp. 271-282. 

Zuo, R., 2011. Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal 

component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical 

Exploration 111, pp. 13-22. 


