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ABSTRACT: High spatial and temporal resolutions of satellite imagery are necessary for improving the ability to 

monitor rapid environment changes at finer scales. However, no single satellite can produce images with both high spatial 

and temporal resolutions. To address this issue, spatio-temporal fusion algorithms, such as the Spatial and Temporal 

Adaptive Reflectance Fusion Model (STARFM) was proposed to synthesize high spatial and temporal resolution images. 

On the other hand, water level monitoring is important to support natural hazard management, such as floods and 

tsunamis. However, continuously monitoring these hazards are challenging for a remote sensing satellite due to either its 

low spatial resolution or low temporal resolution. For example, Operational Land Imager (OLI) onboard Landsat 8 with 

a spatial resolution of 30 m has been applied on water level detection, but it cannot capture dynamic events due to its low 

temporal resolution. On the other hand, The Advanced Himawari Imager (AHI) 8 only needs 10 minutes to watch the 

hemisphere once, but its coarse resolution hampers the accurate mapping of sea level change. This study, therefore, aims 

to blend Landsat OLI imagery with Himawari-8 imagery to monitor the dynamic and local behavior of sea level changes. 

To be specific, we first calculate the modified Normalized Difference Water Index (mNDWI) using Landsat and 

Himawari-8 images and then fuse the index images using the STARFM algorithm. Finally, the water coverage is 

delineated by setting a threshold on the mNDWI index. By comparing the retrieved water coverage percentage with in-

situ water level observations, we have seen a promising result.  

 

 

1. INTRODUCTION 

Recent improvements of remote sensing allow for the acquisition of high-resolution images to be used in wide variety of 

applications, such as in urban planning, forestry management, and water surface mapping. As the remote sensing is getting 

common to be used in many fields, high spatial and temporal resolution of satellite imagery are necessary for improving 

the ability to monitor the change of environment at finder scales. However, no single satellite can produce images with 

both high spatial and temporal resolutions. This kind of problem can be a big issue while sensors will be applied in 

applications that needs these both high resolutions. One of these applications is in monitoring sea level change (Kostiuk, 

2002). Sea level is the average height of the ocean’s surface between high and low tides. Sea level rise not only causes 

floods but also contaminates fresh water and harms coastal ecosystems. Hence, sea level monitoring is necessary for 

disaster management and avoidance.  

Various remote sensors have been applied in detecting and monitoring surface water since the 1970s, such as Moderate 

Resolution Imaging Spectroradiometer (MODIS), and Suomi National Polar-orbiting Partnership - Visible Infrared 

Imaging Radiometer Suite (NPP-VIIRS). Earth observation satellites, such as Landsat and Himawari-8, provide data at 

different spatial, temporal and spectral resolutions. For example, the fine-resolution sensor, Operational Land Imager 

(OLI) onboard Landsat 8 with a spatial resolution of 30 m is considered a continuation of the Landsat series. Its 

applicability in seawater detection has been tested (Moradi et al., 2016), but it cannot capture the dynamic changes of 

seawater as it has a low temporal resolution of 16 days. On the other hand, the coarse-resolution sensor, the Advanced 

Himawari Imager (AHI) 8 provides a high temporal resolution which only needs 10 minutes to watch the hemisphere 

once.  Including the aforementioned remote sensors that have been applied for seawater detection, however, no single 

satellite can provide imagery with both high spatial and temporal resolutions.  
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To overcome this well-known issue in remote sensing, fusing data from different sensors has gained increasing popularity 

in recent years by combining high temporal resolution sensors such as AHI with medium to high spatial resolution sensor 

like Landsat OLI data. As shown in Table 1, the bandwidths of these two sensors are similar which makes the image 

fusion possible. In this paper, we use hourly Himawari-8 surface reflectance and blend with Landsat OLI images to 

achieve efficient sea level monitoring. 

 

Table 1. Corresponding bands list of Landsat OLI and Himawari-8 

Spectral 

Region 

Band Wavelength (µm) Spatial Resolution (m) 

Landsat 

OLI 
Himawari-8 Landsat OLI Himawari -8 Landsat OLI Himawari-8 

Ultra Blue 1 - 0.43 - 0.45 - 30 - 

Blue 2 1 0.45 - 0.51 0.47 30 1000 

Green 3 2 0.53 - 0.59 0.51 30 500 

Red 4 3 0.64 - 0.67 0.64 30 1000 

NIR 5 4 0.85 - 0.88 0.86 30 2000 

SWIR 1 6 5 1.57 - 1.65 1.61 30 2000 

SWIR 2 7 6 2.11 - 2.29 2.23 30 2000 

 

 

2. RELATED WORK 

 
Image fusion is a remote sensing technique that has been applied to obtain more information by integrating images from 

different sensors. In general, image fusion algorithms can be divided into two categories. The first category, spatial-

spectral image fusion, or known as pan-sharpening, blends a lower resolution multispectral image with a higher resolution 

panchromatic image (Dhore & Veena, 2014). Many studies focused on the fusing of a fine resolution panchromatic band 

and coarse resolution spectral bands from one or more sensors. But however, the outputs from those techniques were not 

calibrated to spectral radiance or reflectance. The traditional data fusing approaches such as those using hue saturation 

value (HSV) transforms (Al-Wassai et al., 2011), principal component analysis (Metwalli et al., 2009) and wavelet 

transformation (Pajares & Cruz, 2004) may not suitable for the problem considered here, since we wish to capture the 

high frequency sea level change based on the surface reflectance. 

 

The second category, spatial-temporal image fusion aims at blending high spatial resolution data with high temporal 

resolution data to achieve both high spatial and high temporal resolutions. The spatial-temporal image fusion has been 

proven to be an effective solution for different spatial and temporal sensors. Wu et al. (2015) presented a spatial-temporal 

image fusion model to blend multi-sources of remotely sensed data to achieve both higher spatial and temporal resolutions 

of land surface temperature observation. Gao et al. (2006) proposed the Spatial and Temporal Adaptive Reflectance Fusion 

Model (STARFM) to generate a daily synthetic Landsat-like image by blending Landsat and MODIS images. Another 

image fusion model is for producing synthetic imagery and the detection of changes termed Spatial-Temporal Adaptive 

Algorithm for mapping Reflectance Change (STAARCH) (Hilker et al., 2009). The algorithm is designed to detect 

changes in reflectance, denoting disturbance, using Tasseled Cap transformations of both Landsat TM/ETM and MODIS 

reflectance data. STAARCH also includes functionality for estimating surface reflectance, based on an extended version 

of STARFM. Zhu et al. (2010) later modified the original STARFM as Enhanced STARFM (ESTARFM), which improves 

the prediction in complex heterogeneous regions by involving additional input images. However, because of the simplicity 

of the STARFM, this research chooses the STARFM as the spatial-temporal image fusion algorithm. 

 

In STARFM, the coarse resolution data are first reprojected and resampled to match with the fine resolution imagery. 

Then an unsupervised classification is employed to classify the land cover from the image to identify pixels that are 

spectrally similar. Both fine- and coarse-resolution data are then used to determine the weights for the image fusion 

process, which is shown in the following equation. 

 

 

 

 

 



 

 

 
 

 

 

 

 

where w is the searching window size and (𝑥𝑤/2, 𝑦
𝑤/2

) is the central pixel of a moving window. F and L represent fine- 

and low- resolution images, respectively.  𝑡𝑘  and  𝑡0  represent the time-points of reference data and prediction data, 

respectively. W is a combined weighting based on spectral, temporal, and distance information. To ensure that the right 

information from neighbor pixels is used, only spectrally similar and cloud-free pixels from Landsat surface reflectance 

within the moving window are used. Finally, the prediction value is computed from these weighted values.  

 

3. METHODOLOGY 

 

This study aims at monitoring the dynamic changes of sea level using the STARFM by blending two satellites imagery 

from different sensors, the Advanced Himawari Imager and Landsat 8. To be specific, first, all the images in the testing 

area, the coastline of Kaohsiung Port as shown in Figure 1, should be calibrated to surface reflectance and co-registered 

(via affine transformation). After that, with the Green and SWIR bands, we can calculate the modified Normalized 

Different Water Index (mNDWI) from Himawari and Landsat images, which is an effective indicator of water region (Xu, 

2006). To delineate water and non-water area, a manually-selected mNDWI threshold value of 0.4 was applied. 

 

As the input of the STARFM, the Himawari and Landsat images at reference date along with the classification maps from 

Landsat at the predicted date were used. All the input images of the STARFM are in water index values, this approach 

corresponds to the Index-then-Blend approach mentioned in (Jarihani et al., 2014). Using the classification maps of the 

various sea water level to predict the sea level on the certain date or time. The classification map is used as the input of 

STARFM and applied along with the Landsat image at the reference date and also the Himawari-8 image. The 

classification map is derived by k-means unsupervised classification which is one of the common classification methods. 

 

In this study, we evaluate the result from two perspectives. Firstly, the spatial evaluation analyzes the accuracy of the 

retrieved water region by comparing with the water region retrieved from actual Landsat images. Secondly, the temporal 

evaluation compares the trend of water region changes retrieved from predicted images with the in-situ water level 

observations. The in-situ data was collected from the Central Weather Bureau in Taiwan. The hourly images of Himawari-

8 at 09.00 a.m. to 03.00 p.m. are used as the inputs to predict 30 meters resolution images at 09.00 a.m. to 03.00 p.m.  
 

For the spatial evaluation, the high-resolution image on 2 April 2017 is predicted with the reference image of Landsat and 

Himawari-8 on 1 March 2017 and the Himawari-8 image at the predict date. The actual Landsat mNDWI image at 2 April 

was employed to calculate the Overall Accuracy, Kappa Coefficient, Commission and Omission Errors. In terms of the 

temporal evaluation, as the water level changes dynamically, the classification maps for fusing images at different time 

points should be corresponding to the water height at those time points. To achieve this, this research applies a coarse-to-

fine solution. We first apply an existing tide model called NAO.99b to derive a candidate water height at the predict time, 

and then use the candidate water height to find a suitable reference data for image fusion, including cloud-free Landsat 

and AHI images and the classification map from that Landsat image. For this preliminary study, we collect three nearly 

cloud-free Landsat images and their corresponding water height, as shown in Table 2. 

 
 

 

 

 

 

 

 

 

 

Date Time Water Height (m) 

2017/Jan/12 10.30 a.m. -0.131 

2017/Mar/01 10.30 a.m. 0.256 

2017/Apr/02 10.30 a.m. 0.481 
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Table 2. Reference Landsat image list and the corresponding water height 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Testing area displayed as Landsat Imagery bands (R4G3B2) 

 

Then hourly Himawari-8 images on 01 March 2017 at 09.00 a.m. to 03.00 p.m. were prepared and also the water height 

of each hour was derived from the tide model. The following table shows the hourly water height on 01 March 2017 that 

will be used to select the reference images. 

 

 

 

 

Time Water Height (m) 

09.00 a.m. 0.24 

10.00 a.m. 0.278 

11.00 a.m. 0.234 

12.00 p.m. 0.121 

01.00 p.m. -0.032 

02.00 p.m. -0.184 

03.00 p.m. -0.295 

Table 3. Time points of Himawari-8 and the  

              water height at each hour  



After deriving all the information above, then we pair each Himawari-8 water height to the water height of reference 

Landsat images. If the water heights between Landsat and Himawari-8 are closely similar, a Landsat image will be chosen 

as the reference for image fusion, as shown in the following table. 

 

 

 

Pair 

number 
Himawari-8 image 

Selected reference 

Landsat image 

#1 09.00 a.m. 2017/Mar/01 

#2 10.00 a.m. 2017/Mar/01 

#3 11.00 a.m. 2017/Mar/01 

#4 12.00 p.m. 2017/Mar/01 

#5 01.00 p.m. 2017/Jan/12 

#6 02.00 p.m. 2017/Jan/12 

#7 03.00 p.m. 2017/Jan/12 

 

 

To be specific, for number #1 at 09.00 a.m., the reference data for image fusion are the Himawari-8 and Landsat images 

at 10.30 a.m. on 01 March 2017 along with the corresponding classification map. The Himawari-8 image at predicted 

time, 09.00 a.m. on 01 March 2017, is used as the coarse-resolution image at the predicted time. Please also note that 

currently, the database for the reference data is still very preliminary. One of our main future work is to expand that 

database to find a better corresponding reference data for different water heights. 

  

 

4. PRELIMINARY RESULTS 

 

Validation mainly involves two aspects in this study. On is the spatial evaluation which evaluate the accuracy of sea water 

mapping, and the other is comparing the result of retrieved water region with in-situ water level observations. 

 

4.1 Spatial Evaluation 

 

Figure 2 shows the reference images used to predict high resolution image on 02 April 2017 (Figure 2d). Figure (2a) 

shows the reference mNDWI image from Himawari-8 on 1 March 2017 and the Landsat image at reference date (Figure 

2c). To predict the image on predict date, the image of Himawari-8 at the on the predict date is used (Figure 2c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 4. The pair of Himawari-8 and Classification map used  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An actual Landsat image was employed to validate the results of STARFM, as shown in Figure 3. Water map of the 

predicted result was overlaid with the reference Landsat water map on a pixel-by-pixel basis and an evaluation map was 

produced (Figure 4). Misclassified water areas can be easily identified from the map. It is observed that the errors in the 

water map comes from the underestimates of water area which reflects to the omission errors. 

 

 

 

 

 

 

 

 

(a) 
(b) 

Figure 2. (a) reference mNDWI image derived from Himawari-8 on 1 March 2017; (b) reference mNDWI image 

derived from Landsat on 1 March 2017; (c) mNDWI image derived from Himawari-8 on predicted date 2 April 2017; 

(d) the predicted image on 2 April 2017. 

(d) (c) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) mNDWI image derived from the actual Landsat image at 10.30 a.m on 02 April 2017; (b) water map derived 

from the actual Landsat 10.30 a.m on 02 April 2017; (c) mNDWI image derived from predicted image result; (c) water 

map derived from predicted image result.  
 

 

Commonly-used accuracy evaluation indices, including commission and omission errors, overall accuracy and Kappa 

coefficient, were calculated from evaluation map of Figure 4, and listed in Table 5. This table provides a more 

straightforward comparison on the results of predicted image. High value in Kappa and overall accuracy indicate the 

general consistency between the predicted map of the predicted image and the reference map of actual Landsat image. 

However, there are some omission error occurs at the coastal region, which we think is because the water height of the 

reference data (0.256 m) is lower than the water height of the predicted time (0.481 m). 

(a) (b) 

(c) (d) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Temporal Evaluation 

 

For the temporal evaluation, we compare the hourly water coverage percentages retrieved from fused images with the 

water heights from the in-situ observations. The comparison is shown in Figure 5. In principle, the higher water level 

should have larger water coverage. 

 

Figure 5 shows that the overall trend of the water coverage and the water height fit with each other. However, there are 

still some small errors, which we believe the main reason is that the classification maps used for the predicate time do not 

have the corresponding weight height. For example, the water height at 03.00 p.m. is -0.295 m, but the selected reference 

data is at -0.131 m. We believe that once the database for the reference data is extended to cover the possible water heights, 

the image fusion result can be further improved.  

 

 

 

 

 

 

 

Commission 

Error (%) 

Omission 

Error (%) 

Overall 

Accuracy (%) 

Kappa 

Coefficient 

1.07 2.77 96 0.92 

Table 5. Accuracy of spatial evaluation results 

Figure 4. Evaluation map of the predicted result 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

Monitoring sea level change requires both high spatial and high temporal resolutions, especially for avoiding hazards 

such as flood and tsunami. Unfortunately, no single remote sensor has both high spatial and high temporal resolutions. 

This study examines the feasibility of an existing image fusion model, the STARFM, in blending Landsat and Himawari-

8 images for the sea level monitoring. The evaluations show that STARFM can successfully fuse Landsat and Himawari-

8 images. Both the spatial evaluation and the temporal evaluation shows convincing result. However, we can also observe 

that the selection of corresponding classification maps is a crucial factor. Hence, one of the immediate next steps of this 

study is to collect more Landsat images to provide more choices for the water height reference data. In addition, more 

testing data and testing sites will be examined for a more comprehensive evaluation. 
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Figure 5.  Temporal evaluation result 


