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ABSTRACT:Soil moisture is an important hydrologic state variable. Accurate knowledge of the spatial 

distribution and temporal variation of soil moisture would provide insight into larger-scale hydrological processes 

and would serve as good land surface moisture initialization states in fully coupled climate system models for 

improved seasonal-to-inter annual climatological and hydrological prediction. In recent years, air- and space-borne 

remote sensing campaigns have successfully demonstrated the use of passive microwave remote sensing to map top 

layer soil moisture at various spatial scales. Data assimilation offers a means to combine the advantages of remote 

sensing data with the physical based models. Data assimilation technique provides the best analysis estimators by 

merging the strengths of modelled state and satellite derived observations to achieve higher accuracy and 

continuous improvement in forecasts. In this study root zone (0–1 m below the ground surface) soil moisture 

distributions were estimated across the Mahanadi basin, India by assimilating near-surface soil moisture data from 

the Advanced Microwave Scanning Radiometer for Earth observation science (AMSR-E) with a Kalman filter (KF) 

data assimilation technique coupled with a Variable Infiltration Capacity (VIC) land surface model. 

 

VIC model was setup for entire Mahanadi basin. The input parameters were derived using different geo-spatial data 

sources e.g. IMD gridded daily rainfall, temperature, wind speed and cloud has been used as meteorological 

forcings. NBSSLUP soil map and LULC map of ISRO-GBP LULC project for year 2005 were used for generating 

the soil and vegetation parameters, respectively. The fluxes obtained from VIC have been routed to simulate 

discharge for the time period of 1995-2010. Validation of calibrated model is done using observed discharge data 

from different stations and the coefficient of determination, Nash-Sutcliffe model efficiency coefficient and relative 

error measured in the validation phase (1995-2010) were 0.95, 0.99 and -0.039, respectively. Assimilated variable 

(soil moisture) is used to generate multilayer soil moisture regime. A dataset (maps) for different hydrological 

parameters have been generated on a daily basis which can be used as an important initialization variable in large-

scale weather forecasts and climatic predictions modeling. 

 

1. INTRODUCTION 

 

Soil moisture (SM) is a critical parameter in the hydrologic cycle, which controls partitioning of the incoming 

radiation into latent and sensible heat fluxes, and in the partitioning of precipitation into infiltration, surface runoff 

and evaporation (Georgakakos, 1996). Spatio-temporal distributions of soil moisture status in the root zone across 

large landscapes provide important input for many agricultural, hydrological, and meteorological applications 

(Hanson et al., 1999). Soil moisture varies both in space and time because of spatio-temporal variations in 

precipitation, soil properties, topographic features, vegetation characteristics and human interventions. Given the 

importance of soil moisture in Earth system processes, a large amount of research has been devoted to the 

estimation of this variable at large spatial scale through satellite remote sensing. The first large-scale soil moisture 

satellite validation program for the Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua satellite 

helped to establish several moderate-resolution watershed networks, resulting in a specially designed suite of 

landscapes for validation (Jackson et al., 2010).Another fundamentally different way to obtain information on the 

surface SM content is by the application of physically-based spatially distributed land surface models (LSMs). 

These models simulate processes related to the water and energy balance at the land surface.  

 

Even though both remote sensing and hydrologic modeling are very useful for the estimation of spatially distributed 

SM, their estimates remain prone to a significant amount of uncertainty and errors (Choudhury et al., 1979; Wang 

et al., 1983; Pauwels et al., 2001; Wigneron et al., 2004; Panciera et al., 2009; Sabater et al., 2011; Al Bitar et al., 

2012; Leroux et al., 2013; Rahmoune et al., 2013; Parrens et al., 2014; Martens et al., 2015). However, by 

combining hydrologic model predictions with remote sensing observations, improved estimates of soil moisture can 

be expected at large scales (Lahoz and De Lannoy, 2014). Several studies have shown how improvements in 

antecedent soil moisture conditions after assimilating microwave remote sensing observations may impact the 

forecasting of runoff (Brocca et al., 2010, 2012; Draper et al., 2011; Matgen et al., 2012; Pauwels et al., 2002; 

Pauwels et al., 2001). However, these studies were mainly focused toward active sensors (e.g. ERS and ASCAT) 

and predictions for small basins. The assimilation of global satellite SM retrievals into hydrologic models presents a 



number of challenges. As noted by Wood et al. (2011), it can be expected that LSMs will be applied at fine spatial 

resolutions, while the remote sensing products will be delivered at significantly coarser spatial resolutions. Either 

the data assimilation algorithm will have to take into account this spatial mismatch (Sahoo et al., 2013), or the 

satellite products will have to be pre-processed so their spatial resolution matches the spatial resolution of the 

hydrologic model (Merlin et al., 2010; Verhoest et al., 2015). Other reasons may relate to approximations and 

shortcomings in both the retrieval algorithms and land surface models (De Lannoy et al., 2007). However, 

mitigating these climatologic differences between model simulations and observations of SM is necessary for 

successful data assimilation (Reichle and Koster, 2004; De Lannoy et al., 2007; Kumar et al., 2012).  

 

Studies have been conducted on improving assessment of profile soil moisture with the help of field based surface 

soil moisture observations and remotely sensed surface moisture data and it has been concluded that the most 

promising approach to the problem of profile soil moisture estimation was the integration of remote sensing and 

computational modeling. (Kostov and Jackson, 1993; Entekhabi et al., 1994). Houser et al. (1998) studied the use of 

4-D-Var data assimilation methods in a macroscale land hydrology model to generate root zone moisture fields on 

regular space and time intervals. Walker et al. (2001) explored the effects of observation depth and update interval 

on soil moisture profile retrieval and made a comparison of two commonly used assimilation techniques (i.e., direct 

insertion and Kalman Filter) using synthetic data. They concluded that Kalman Filter (KF) assimilation scheme is 

superior to the direct insertion assimilation scheme. Profile retrieval was unsuccessful for direct insertion using the 

surface node alone; observations over some nonzero depth were required. The superiority of the KF lies in its 

ability to adjust the entire profile, while direct insertion can only alter the profile within the observation depth. On 

the contrary, Heathman et al. (2003) investigated profile soil water content using direct data assimilation in the root 

zone water quality model at four field sites in the LittleWashita (LW) River Experimental Watershed during 

SGP97, and found that direct insertion assimilation improved model estimates down to a depth of 0.30 m at all the 

sites considered in their study, and no significant improvement in soil water estimates below the 0.30-m depth. 

Crosson et al. (2002) applied the KF based method for assimilating remotely sensed (ESTAR-based, during SGP97) 

soil moisture estimates in a point-scale testing scheme and found that even in the presence of highly inaccurate 

rainfall the model results in good agreement with observed soil moisture.  

 

Generally, data assimilation is used in conjunction with a soil–vegetation–atmosphere transfer (SVAT) model, also 

known as LSM. The estimation of soil moisture and energy–mass exchange is simulated using SVAT. The accuracy 

of SVAT models is usually restricted by unreliable estimates of soil moisture (Koster and Milly, 1997). The model 

can be treated as a stand-alone program, which communicates with the filter through its input and output files. The 

filter provides a set of random initial conditions, parameters, and forcing variables to the land surface model. In 

turn, the model derives a time dependent state vector that is passed to the filtering algorithm. This modularity 

makes it possible to use nearly any land surface model in a data assimilation procedure based on KF. The most 

frequently used SVAT models with data assimilation are the NOAH model (Chen et al., 1996), Variable Infiltration 

Capacity (VIC) model (Liang et al., 1996), Mosaic model (Koster and Suarez, 1996), and Common Land Model 

(CLM; Dai et al., 2003). The SVAT models typically include a thin surface soil layer and one or more, thicker root 

zone layers and estimate soil moisture of each soil layer at the land–atmosphere boundary and the interfaces 

between the soil layers. The SVAT models run typically in an uncoupled fashion using a number of generic tools to 

manage the input and output data. From the vadose zone hydrology perspective at the landscape scale or larger, 

there is a need for simple and robust integration of surface remote sensing information into a dynamic soil water 

model in a distributed computing platform (e.g., GIS) to improve the simulation of soil moisture. Hellweger and 

Maidment (1999) automated a procedure to define and connect hydrologic elements in ARC/INFO and ArcView 

and write the results to an ASCII file that is readable by the Hydrologic Engineering Center’s Hydrologic Modeling 

System (HEC-HMS).  

 

In this study we have used the modeling capability of Geospatial tools to apply a simple sequential data 

assimilation (i.e. Kalman Filter) approach in conjunction with a numerically robust Variable Infiltration Capacity 

(VIC) land surface model (Liang et al., 1994; Liang et al., 1996; Liang et al., 1999) that incorporates remotely 

sensed surface soil moisture observations (from a passive microwave remote sensor, AMSR-E) to estimate the soil 

moisture profile. This has the advantage of combining the spatio-temporal continuity of the model prediction with 

intermittent input of remotely sensed observations in a geographically distributed framework to improve the soil 

moisture estimation and minimize model and parameter uncertainties using the data assimilation protocol. 

 

2. STUDY AREA AND DATA USED 

 

A river basin at appropriate scale is generally the most logical geographical unit of hydrological analysis and water 

resources management. The 1,41,589km2 Mahanadi River basin (Figure 1),encompassed within geographical co-

ordinates of 80°28' to 86°43' East longitudes and 19°08' to 23°32' North latitudes, covering major parts of Odisha, 

Chhattisgarh, small portions of Madhya Pradesh, Maharashtra and Jharkhand states of India, has been selected as 



the study area. The average annual discharge at basin outlet, Kendrapada, is 2,119 m3/s, with a maximum of 56,700 

m3/s during the summer monsoon. Minimum discharge is 759 m3/s and it occurs during the months October through 

June. The maximum precipitation in the basin is usually observed in the month of July, August and first half of 

September. Normal annual rainfall of the basin is 1360 mm (16% CV) of which about 86% i.e. 1170 mm occurs 

during the monsoon season (15% CV) from June to September (Rao, 1993).  In the winter the mean daily minimum 

temperature varies from 4°C to 12°C. The month of May is the hottest month, in which the mean daily maximum 

temperature varies from 42°C to 45.5°C.  

 
Figure 1: Study Area (Mahanadi River Basin) 

 

An interpolated 0.25o×0.25o gridded daily rainfall dataset developed by India Meteorological Department (IMD) 

Pune was used to derive daily rainfall in mm over the basin. The daily average wind speed and cloud cover data 

was rasterized and utilized for the present study. Observed river discharge data of Mahanadi Basin was collected 

from India-WRIS website and used for model calibration and validation of the results. Shuttle Radar Topographic 

Mission (SRTM) Digital elevation model (DEM), available at 3 arc seconds having a spatial resolution of 90m, was 

used in the study to prepare inputs like average elevation in each model grid, slope, basin delineation, elevation 

bands, flow direction etc. National Bureau of soil survey and Landuse Planning ( NBSSLUP)generated soil map 

and LULC map of ISRO-GBP LULC project entitled “Land Use Land Cover Dynamics and Human Dimension in 

Indian River Basins” at 1:2,50,000 scale were used for generating the soil and vegetation parameters respectively. 

The major soil types found in the basin include red and yellow soils, mixed red and black soils (laterite soils). 

Sandy loam (38.3%), loam (25.53%), loamy sand (19.15%), light and heavy clay (6.38%) and sand clay loam 

(4.26%) are the predominant textures on the soil surface as given in Figure 2 (a). Land use and land cover (LULC) 

is dominated by cropland (56.36%), rice being the major crop as given in Figure 2 (b). Daily soil moisture product 

of AMSR-E for the month of August 2010 has been used in the present study for assimilation in VIC and validation 

of model results with respect to soil moisture. 

 

 
a) Land Use Land Cover (Source: IGBP)   b) Soil Texture (Source: NBSSLUP) 

Figure 2: a)Land Use Land Cover Map and b) Soil Texture Map of the Mahanadi Basin  

 

3. METHODOLOGY 

 

The methodology is broadly divided into two main steps a) Setting up of the VIC model, model 

calibration/validation and modeling the hydrological components of the basin; b) Assimilation of satellite derived 

soil moisture data into the VIC model using data assimilation techniques and generating the scenario. In this 



research VIC-3L model (Liang et al., 1994) which solves both water balance and energy balancehas been 

implemented. This model accounts for the heterogeneity of the surface such as subgrid variability of vegetation 

classes, soil moisture storage capacity as it divides the whole study area into number of grids. Study area has been 

divided into square grids of 25km resolution. At first model was set up and run in the water balance mode. The 

fluxes obtained from VIC have been routed to simulate the discharge for the time period of 1995-2010. Kalman 

Filtering Data Assimilation technique has been implemented for the year 2010 in this study to improve the model 

forecasts of soil moisture.  

 

3.1Methodology for VIC Modeling 

 

3.1.1 VIC Setup  

 

The Variable Infiltration Capacity (VIC-3L) model (Liang et al., 1994, 1996, 1999) is a distributed LSM that 

accounts for both the water and energy budgets. During the last decades, the VIC model has been widely used in a 

number of applications (Maurer et al., 2001; Nijssen et al., 2001; Sheffield et al., 2003; Sheffield and Wood, 2008; 

Dadhwal et al., 2010; Aggarwal et al., 2012; Aggarwal et al., 2013; Nikam et al., 2015; Shiradhonkar et al., 2015; 

Garg et al., 2016; Garg et al., 2017a, b; Nikam et al. 2017). The grid cell size of VIC can be specified between 1 km 

and hundreds of kilometers, where each cell can be statistically subdivided into fractions that represent different 

land cover types. The present study uses a grid resolution of 25km×25km. Associated with each land cover type is a 

single canopy layer, and three soil layers. The canopy layer determines the interception of precipitation as a 

function of leaf area index (LAI) according to a biosphere– atmosphere transfer scheme (BATS) (Dickinson et al., 

1986). It includes a top thin soil layer to represent quick bare soil evaporation following small rainfall events, a 

middle soil layer to represent the dynamic response of the soil to rainfall events, and a lower layer to characterize 

the seasonal soil moisture behaviour (Liang et al. 1994, 1996; Liang and Xie 2001). The first soil layer represents 

the top 10 cm, whereas the second and third layer depths are variable. The first two layers control the partitioning of 

precipitation into surface runoff and infiltration, hence, they capture the dynamic response to the infiltrated 

precipitation. Thereby, diffusion of soil moisture is allowed in case of a wetter second layer. The infiltration 

capacity i is given by the Variable Infiltration Capacity curve (Zhao et al.,1980): 

 

𝑖 = [1 − (1 − 𝐴)
1

𝑏⁄ ] 𝑖𝑚       (1) 

where im is the maximum infiltration capacity, A is the fraction of area for which the infiltration is less than i, and b 

is a shape parameter. The third layer receives moisture from the second layer through gravity drainage, with a 

hydraulic conductivity given by the Brooks–Corey relationship for unsaturated soils (Brooks and Corey, 1964), and 

controls the generation of baseflow through a nonlinear recession curve. VIC- 3L explicitly represents the effects of 

multiple vegetative covers on water and energy budgets. It uses physically based formulations for the calculation of 

the sensible and latent heat fluxes, and the conceptual ARNO formulation for base flow (Todini, 1996) to simulate 

runoff generation from the deepest soil layer. It also uses the conceptual surface runoff model with the Philip 

infiltration formulation that dynamically represents both the saturation and infiltration excess runoff processes in a 

model grid cell with consideration of subgrid-scale soil heterogeneity (Liang and Xie 2001; Xie et al., 2003) to 

simulate runoff generation from the upper two soil layers. For a detailed description of the VIC-3L in this paper, 

readers are referred to Liang and Xie (2001) and Xie et al. (2003).This LSM uses both space-borne sources as well 

as ground-based inputs. The VIC model comprises of two working modules: VIC Module and Routing Module. 

The model works at both daily and sub-daily time step. The overall flowchart of methodology for running VIC 

model is given in Figure 3.  

 
Figure 3:Flowchart for Methodology of Hydrological Modeling Using VIC Model  

 



3.1.2 VIC Model Input Generation 

 

The VIC tool developed by Gupta et al. (2012), as a part of the ISRO-GBP Project on LULC dynamics and impact 

of human dimensions in Indian River Basins, IIRS Dehradun, was used to prepare the input files. The primary 

functions performed by the tool are: Data and forcing preparation (Soil parameter preparation, Vegetation 

parameter preparation), Model execution, Global parameter preparation, Result analysis and Tabular analysis. The 

inputs for the model are: Terrain (Elevation, Slope, Flow Direction), LU/LC, Vegetation Properties (LAI, Albedo, 

Root distribution, Canopy Resistance), Soil Properties (Layer-wise physical texture and hydraulic properties) and 

Meteorological inputs: Daily inputs of Precipitation, Temperature, Wind speed and Cloud cover. 

 

Square grids were generated over the basin covering its entire geographical extent at the resolution of 25km×25km 

in ArcGIS. The attributes of the grid file include Grid ID, Latitude & Longitude of each grid cell center, Run Grids, 

Slope(%), Elevation(m), Average Annual Rainfall(mm), Soil Texture of each soil layer. SRTMDEM was used for 

the preparation of the elevation map and the slope gradient in m/m. Meteorological forcing files were prepared 

using the IMD gridded data. Four major input files are required to make the VIC model input database namely the 

Vegetation parameter file, Vegetation Library file, Soil parameter file and Forcing files. The data in these files are 

stored in the ASCII format. A soil parameter file describes the characteristics of each soil layer for each grid cell. 

The primary data source to prepare this input was digital soil texture map prepared from NBSS & LUP soil maps 

(scale-1:2,50,000). The vegetation parameter file describes the vegetative composition of each grid cell. This file 

cross-indexes each vegetation class (from any land-cover classification scheme) to the classes listed in the 

vegetation library. To prepare the vegetation parameter file, landuse map was overlaid on the grid map and the 

number of vegetation classes as well as fraction of grid covered by those classes was extracted. The vegetation 

library file describes the static parameters associated with each land cover class. The LULC map prepared under 

ISRO-GBP LULC project has been used for the given study area. The vegetation library file was taken from it. The 

vegetation library file contains detailed temporal information of biophysical parameters of all the vegetation types 

influencing water and energy balance process values of these parameters for all the LULC classes were assembled 

based on Global Land Data Assimilation System database (http://ldas.gsfc.nasa.gov/gldas/GLDASmapveg.php).A 

global parameter file was generated which contains necessary information to specify the user preferences and the 

parameters and to include information regarding the number of layers, time step, location of the input and the 

output files, the modes which are to be activated. The VIC 4.0.6 was compiled using gcc complier on Linux 

operating system. Global control parameters were modified according to the input characteristics to activate the 

water balance. VIC source code is executed in the LINUX environment to generate the flux files for each basin 

grid. These flux files contain surface runoff, evapotranspiration, baseflow, soil moisture etc. produced at that 

location. The grid based runoff fluxes are routed using a stream flow routing model developed by Lohmann et al. 

(1996). The inputs files for this routing scheme are flow direction file, the fraction and station files. Above stated 

input files are prepared using DEM as the primary input. A control file defining user preferences and location of 

input files will be used to call the routing code in LINUX environment.  

 

3.1.3 VIC model calibration and validation  

 

The daily runoff fluxes were routed to multiple observation stations using VIC routing model proposed by 

Lohmann et al. (1996) and Lohmann (1998a, b). The simulated discharge at Tikarapara observation station has been 

used during calibration phase of the model. The primary aim of calibration process was to minimize the difference 

between simulated and observed hydrological output from the basin, which in present case is the annual and 

monthly discharge at Tikarapara observation station. The comparison of simulated discharge from VIC with the 

observed discharge data for the time period not considered during calibration or for stations not considered can hint 

the success of calibration phase. This comparison is known as validation of the calibration phase. Validation of 

results has been done at the Jhondra gauging station for the period of 1995-2010. Three performance indicators 

were selected for model calibration and validation: (i) Relative error, (ii) The Nash– Sutcliffe coefficient (Nash and 

Sutcliffe, 1970), and (iii) Coefficient of Determination, (R2). 

1) The relative error (Bias; %) between simulated and observed mean annual runoff, which reflects the error of the 

total monthly or annual flow volume. 

𝑅. 𝐸. =  
(𝑄𝑚̅̅ ̅̅ ̅−𝑄0

𝑡̅̅ ̅̅ )

𝑄0
𝑡̅̅ ̅̅                     (2) 

2) The Nash–Sutcliffe model efficiency coefficient is used to assess the predictive power of hydrological models. 

It is defined as: 

Ns = 1 −
∑ (Q0

t −Qm
t )

2T
t=i

∑ (Q0
t −Q̅0)

2T
t=i

      (3) 

where Qo is the mean of observed discharges, and Qm is modelled discharge. Qo
t is observed discharge at 

time t.Nash–Sutcliffe efficiency can range from −∞ to 1. An efficiency of 1 (E = 1) means that the model perfectly 

predicts the observations.  

http://ldas.gsfc.nasa.gov/gldas/GLDASmapveg.php
https://en.wikipedia.org/wiki/Hydrology


3) The Coefficient of Determination is the square of the Pearson's Product Moment Correlation Coefficient (i.e., R2 

= r2) and describes the proportion of total variance in the observed data that can be explained by the model. It 

ranges from 0.0 (poor model) to 1.0 (perfect model) and is given by: 

𝑅2 = {
∑ (𝑂𝑖−�̅�)(𝑃𝑖−�̅�)𝑁

𝑖=1

[∑ (𝑂𝑖−�̅�)2𝑁
𝑖=1 ]

0.5
[∑ (𝑃𝑖−�̅�)2𝑁

𝑖=1 ]
0.5}     (4) 

where O and P denotes the observed and predicted discharges, the over-bar denotes the mean for the entire time 

period of the evaluation. 

 

3.2 Soil Moisture Data Assimilation in VIC 

 

Data assimilation systems are typically designed to merge uncertain predictions from models with incomplete and 

noisy measurements from an observing system. Assimilation approaches optimally combine model predictions and 

independent observations in such a manner that the shortcomings of each approach are mutually compensated. 

Methodology for data assimilation given in the flowchart (Figure 4) focuses mainly on the soil moisture 

assimilation. The assimilation of AMSR-E daily soil moisture product has been done in the soil parameter file of 

the VIC input.  

 
Figure 4: Methodology for Soil Moisture Data Assimilation in VIC Model 

 

VIC model is run in the ‘model state’ mode a daily time step. Then, the state files were updated after running the 

model assimilated with the data and then the effects have been observed on the various outputs and on the multi-

layer soil moisture regime. Surface soil moisture (1-2cm) observations derived from AMSR-E for the year 2010 has 

been used for the purpose. Kalman filtering technique has been applied to assimilate AMSR-E soil moisture data 

for the month of August, 2010 for all the grids of the basin. Kalman gain was calculated for all the run grids in 

52×52 matrix samples for 4 times to cover all 208 grids. AMSR-E observed soil moisture data values were 

multiplied by conversion factor 0.001 to obtain soil moisture in g/cc which was further converted to mm before 

assimilating into the model.  

 

In this section, the Kalman filter algorithm has been described. The Kalman filter is a recursive algorithm that 

updates an analysis state from a weighted average of a model prediction and observations of the true state. A 

successful Kalman filter update will result in the analysis state being a more accurate estimate of the true state than 

either the model prediction or the observations alone. Furthermore, the Kalman filter algorithm assumes that there 

exists a linear observation operator H from the state space to the observation space The Kalman filter formulates the 

background error covariance matrix Pb for the background state as:  

Pb = X′1
b(X′1

b)T                    (5) 

Where, Pa is the analysis covariance matrix from the previous Kalman filter update step. These covariance matrices 

Pa and Pb, respectively, describe the uncertainty in the estimated analysis state and the estimated background state. 

Perturbation from mean for the ith member  

X′1
b =  X1

b − Xi
b       (6) 

From Eq (7), we see how the Kalman filter update step acts as a weighted average between the model estimate 

background state 𝑋𝑖
𝑏 and the observations Y (i.e. soil moisture measurements) ,based on uncertainties in both, 

which produces an analysis state 𝑋𝑖
𝑎 and its associated covariance matrix Pa. The most common formulation of the 

Kalman filter update step is: Analysis = Background + Kalman Gain × (Innovation) given by the equation: 

  Xi
a = Xi

b + K (Y − H(Xi
b))     (7) 

𝑃𝑎 =  𝑃𝑏(1 − 𝐾𝐻)      (8) 

Where the Kalman gain matrix in Eqn. (7) and (8) is defined as 



K = PbHT(HPbHT + R)−1                  (9) 

where, Xi
a = updated estimate of the analysed state. (n×1 dimension); Xi

b = background Model forecast also 

referred as the first guess in data assimilation (N×1 dimension); i=1 to N, where N is the number of ensembles; X1
b 

or Y = Observations (p×1 dimension & p is the no. of observations) soil moisture measurements; H = Observation 

operator that converts the states in the model into observation space (p×n dimension); K = Kalman gain that weighs 

the effect of the observations to the state update (p×n dimension); R= Observation error covariance with dimension 

(p×p); Pb=Background error covariance  

 

It is observed in Eq. (8) how the KH term acts as a rank correction from the background covariance to the analysis 

covariance, which can then result in a reduction in the error of subsequent state analyses. By definition, a 

covariance matrix is positive semi-definite, so it might not be invertible. In order to ensure that the Kalman gain 

matrix K in Eq. (9) is well-defined, the linear Kalman filter formulation typically assumes observations are 

independent of each other, which implies that the observation error covariance matrix R is positive definite and of 

full rank m. The analysis state 𝑋𝑖
𝑎 from these two Kalman filter formulations is a unique, unbiased, minimum 

variance estimate of the true state when the model and the observation operator are linear. 

 

The Background error covariance matrix, Error covariance matrix, Kalman gain matrix and Analysis matrix were 

generated. Error covariance matrix R is important to eliminate the errors accounted for in the observation data. KF 

works on the principle of BLUE (Best Linear unbiased Estimator), hence 20% error in AMSR-E soil moisture 

product has been assumed and for this standard deviation, the Error covariance matrix is estimated same as 

background matrix. Model state soil moisture is in mm hence we have to convert AMSR-E soil moisture product 

from g/cc to mm. The observation error covariance matrix is a diagonal matrix of dimension 52×52 generated for 

all the grids of the entire basin for 31 days. Then the Kalman gain was reckoned for all the grids for the entire 

month of August. Kalman gain matrix H is identity matrix because model forecasted soil moisture and the same 

variable’s satellite observation has been applied in equation which seems there is no need of conversion factor for 

state to observation. Analysis matrix gives the updated states of soil moisture. The updated state i.e. after 

assimilation is of dimension 1×52. The updated soil moisture was again incorporated in state file generated for that 

particular day by running VIC. It is done by using fraction of vegetation tiles in each grid and the soil moisture was 

estimated by VIC for respective vegetation fraction in the same grid. Weighted average of each fraction of 

vegetation and its respective moisture was calculated and then simply by multiplying the analysis i.e. updated soil 

moisture from KF to each average the new soil moisture was estimated for each fraction of each grid, after which 

the old state file was replaced by new soil moisture values and new file was generated to run VIC to get new model 

states i.e. forecasts.  

 

4. RESULTS AND DISCUSSION 

 

The grid based VIC-3L model setup for Mahanadi basin was forced with observed meteorological forcings. Other 

essential input parameters pertaining to topography, vegetation cover and soil were generated using geo-spatial data 

sources and/or tools. The model was run in water balance mode for the time period 1995 to 2010. The resultant 

surface water balance fluxes were used as input for VIC routing model along with other topographical inputs. The 

routed discharges for different locations were used to evaluate hydrological behaviour of model. The results of 

model calibration and validation process area described here. 

 

4.1 VIC Model Calibration and Validation 

 

First the model was simulated by considering initial values of calibrating parameters. Keeping the results of the 

initial iteration as reference, the remaining parameters were increased or decreased until the best match between the 

observed and simulated discharge was obtained. The best match between simulated and observed discharge was 

observed for the soil calibration parameters such as bi=0.4, Ds=0.001, Ws= 0.9 for soil zone 0.05, 0.25, 0.70. Soil 

calibration parameter bi, which defines the shape of the variable infiltration curve, is the most sensitive parameter 

affecting runoff of the basin followed by Ws and Ds. The hydrograph of the monthly observed and simulated 

discharge at Tikarapara station, a gauging station used for model calibration process, after calibration is presented 

in Figure 5. 

 

In the present study model calibration is done at Tikarapara gauging station which is considered as the main outlet 

of the Mahanadi Basin and validation of results is done at the Jhondra gauging stations.R2 value of scatter plot 

between observed and simulated monthly discharge at Tikarapara gauging station is 0.953 which shows that the 

model is well calibrated. Essentially, the closer the value of R2 and Ns is to 1, the more accurate the model is. The 

more the relative error or bias is closer to 0, indicates less model error or inaccuracy.The R2 value of scatter plot at 

Jhondra gauging stations are 0.856 which shows that the model is well validated. Mean annual observed discharge 

at Tikarapara gauging station is 18105.36 cumec whereas calibrated model simulated mean annual discharge is 



18049.49 cumec which shows model is well calibrated to be used for further study. The Nash–Sutcliffe model 

efficiency coefficient is used to assess the predictive power of hydrological models. The Nash–Sutcliffe model 

efficiency coefficient between observed and simulated discharge is 0.9979 at Tikarapara gauging station. The R2 

value, Nash-Sutcliffe model efficiency coefficient and Relative error values for monthly and mean monthly 

simulations at each gauging station are summarised in Table 2 for both the calibration and validation phases of the 

model. The hydrograph of the monthly observed and simulated discharge at Jhondra station after validation is 

presented in Figure 6.  

 

 
Figure 5: Hydrograph for simulated and observed monthly discharge at Tikarapara (calibration phase) 

 

Table 2:Performance indicators during model calibration and validation 

Outlet Monthly Simulation Mean Monthly Simulation 

 R2 Ns R.E. R2 Ns R.E. 

MODEL CALIBRATION PHASE (1995-2010) 

Tikarapara 0.8655 0.9138 -0.0396 0.9527 0.9979 -0.0031 

MODEL VALIDATION PHASE (1995-2010) 

Jhondra 0.7691 0.9998 +0.0131 0.8555 0.9933 -0.0265 

 

 
Figure 6: Hydrograph for simulated and observed monthly discharge at Jhondra (validation phase) 

 

4.2 Data Assimilation Results 

 

In this study, the top layer soil moisture estimation from the AMSR-E on the NASA EOS Aqua satellite has been 

applied to retrieve deep-layer soil moisture as well as other fluxes using the VIC land surface hydrologic model and 

KF data assimilation technique. Assimilation has been done for the month of August, 2010 for all the grids of the 

basin.   

 

Results have been compared with rainfall events to check the soil moisture variability and effect of irrigation in the 

respective grids. Figure 7 is the graphical representation of observed, model simulated and updated estimates of soil 

moisture for grid number 349, showing the effect precipitation on DA. Considering the satellite data to be true 

(observation), assimilation has pulled down the modelled state towards observed data and the effect of assimilation 

continues as long as there is not much influence of rainfall event as shown in Figure 7. With increase in rainfall the 

assimilated soil moisture is again pulled towards the modelled soil moisture state. Forecasted soil moisture changes 
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following the rainfall trend but the assimilated soil moisture follows the pattern of water balance. Same results can 

be observed for all the grids of the basin. Few grids have been selected to show the behaviour of the assimilated soil 

moisture with respect to modelled and observed. 

 
 

Figure 7: Impact of Data Assimilation on Modelled State Moisture 

 

When there is no rainfall the forecasted moisture continuously decreases whereas assimilated trend may increase or 

decrease that means the surface irrigation phenomenon is observed well due to assimilation of observed soil 

moisture in the model. Any of the basin scale hydrological model is setup using virgin conditions and therefore it 

cannot incorporate irrigation facility which is more of a localized activity. Therefore, in pixels where there is 

human intervention in terms of water distribution (irrigation), the model fails to predict correct state of model 

parameters (e.g. soil moisture, evapotranspiration, runoff, etc.).Even satellite observation cannot penetrate to more 

than 5cm of soil depth and are often obstructed by dense cloud cover and vegetation. Assimilation of observed data 

merges the advantages of both model and observation to give accurate results. 

 

 
Figure 8: Water budget without(a) and with(b) assimilation 

 

Data assimilation has been performed for the 31 days of August month in three intervals on day 2, 11 and 31 after 

every 10 days. The first assimilation phase was from day 2 to day 11, second assimilation from day 11 to day 21 

and third phase from day 21 to day 31.Day 1 is not considered as for that day only 12.4% of grids had observed soil 

moisture data. On Day 2, 97% of the grids had available observed data. The difference between soil moisture in 

layer 1 and layer 2 at the beginning of assimilation phase and at the end of first assimilation phase are -2.65mm and 

-2.04mm respectively, for the second assimilation i.e. day 11 to 21, are +1.51mm and -6.09mm respectively and for 

the third assimilation i.e. day 21 to 31 were +0.52mm and -4.27mm respectively. Figure 8 gives a clear idea on the 

modelled and assimilated water budget. Runoff and ET have increased after assimilation. First and second layer 

deficit has increased with assimilation. Modelled (without assimilation shown in Figure 8a) and updated (with 

assimilation shown in figure 8b) soil moisture deficit for the 1st layer are 0.01mm and 0.37mm respectively and for 

2nd layer are -0.94 and -4.22 respectively. Here, deficit refers to the difference in soil moisture estimates (mm) of 

day 2 and day 31 of the chosen assimilation period i.e. August, 2010. It is evident from the present study that 

satellite observed soil moisture can be assimilated at top layer soil moisture in VIC model using Kalman filter DA 

approach. The assimilated soil moisture product after being validated using field observed soil moisture data can be 

used for climatic predictions and weather forecasts as well as agriculture and water management. 
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5. SUMMARY AND CONCLUSION 

 

Basin hydrological response is a very complicated process which is dominated by parameters including land use, 

terrain, soil texture and characteristics and soil moisture state. Understanding and quantifying the land parameters is 

essential for management of water resources. Modeling of hydrological components is an efficient method for 

doing consistent long-term basin behavioural studies. The problem of competently addressing the uncertainty 

related to hydrological predictions, even after the development of computationally efficient and advanced 

modeling, still remains a challenging one. Systematic merging of data from different sources into models by data 

assimilation technique can give higher accuracy and perpetual improvement in hydrological forecasts. Hydrologic 

data assimilation technique by coupling the advantages of forecast and the remotely sensed observations can 

achieve higher accuracy and continuous improvement in hydrological estimates. In the present study it has been 

envisaged to set up a fully calibrated and validated distributed physical based hydrological VIC model for the 

Mahanadi River Basin, to estimate runoff, evapotranspiration, baseflow and SM on daily basis. The model is 

parameterized using traditional observed and remote sensing data. VIC model was forced and run to generate fluxes 

on a daily basis. As recorded from the water balance analysis of the basin, about 22% of total precipitation received 

by the basin contributes towards runoff generation. From parameter calibration scheme, it is evident that 

streamflow was found sensitive to variables like upper and lower soil layer depth, velocity of flow and vegetation 

parameters. Soil calibration parameter, bi, is the most sensitive parameter affecting runoff of the basin followed by 

Ws and Ds.  

 

Soil moisture being an essential variable for running water as well as energy balance modes has been selected for 

data assimilation study. This research demonstrates that a Kalman Filter based DA scheme is able to integrate 

surface soil moisture observations  into a distributed land surface model for Mahanadi Basin in India to provide a 

more accurate soil moisture estimate particularly at the root zone than modeling alone. Assimilated variable (soil 

moisture) is utilized to generate multilayer soil moisture regime.An improved data set (maps) for different 

hydrological parameters has been developed on a daily basis which can be used as input data for other 

activities.Assimilation improves soil moisture estimates in root zone as well as water balance and provides 

continuous and consistent soil moisture profile estimates. Kalman filter corrects model-generated soil moisture 

toward the satellite observation, with the size of the correction dependent on the relative magnitudes of the satellite 

observation and model errors. It has been shown that with the correct model and observation errors, data 

assimilation provided more accurate root zone soil moisture estimates. Both spatial (all basin grids) and temporal 

(daily SM estimates for the entire assimilation period) availability of improved soil moisture dataset at daily time-

step is ensured by data assimilation. 
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