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ABSTRACT: This paper details the validity of utilizing a color-based approach to monitor cotton crop 

readiness. By harnessing the TripleSat Constellation’s 0.8m resolution multispectral imagery, this paper 

introduces how the maturing of cotton plants can be captured through non-conventional methodologies: 

employing the usage of the visible spectral bands to detect the change in the plantation’s surface reflectance. 

Through the experiment, it was discovered that the red wavelength band (600-670nm) responded most 

significantly to cotton’s phenological changes during the maturing phase. A hypothetical index is thus 

constructed to detect this physical change in cotton plantations. This allows for stakeholders to better monitor 

cotton readiness, and also to pre-empt incoming harvesting seasons over large areas simultaneously. This 

paper constitutes a portion of 21AT’s engagement with agricultural research, using high-resolution imagery 

to further improve this field of study, be it in enhanced crop monitoring, crop health management, soil studies, 

or land suitability evaluations.  

 

INTRODUCTION 

Remote Sensing and Cotton 

Recent advances in remote sensing technologies have enabled agricultural stakeholders and researchers to 

set their sights further and wider in a literal sense. With their ability to collect “temporally and spatially 

continuous data over much of the globe” (Tucker & Choudhury, 1987) in a short amount of time, remote 

sensing has become a main driver of the proliferating academic research into crop monitoring and 

management today. Not only do optical satellites capture large swaths of agricultural lands at once, the 

multispectral wavelength bands that the images can capture also provide researchers with information 

traditionally not visible to the naked eye. 

 

Figure 1: Study Region in Queensland/New South Wales, Australia 
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Cotton is one of the many beneficiaries from the advancement of remote sensing technology. As an important 

raw material in the global textile trade, cotton as a cash crop became widely cultivated in many parts of the 

world today, such as India, China, Australia, and the United States. By drawing upon various vegetation 

indices and proxies from multispectral imagery, studies were conducted to extract insights on cotton crops, 

be it predictions of cotton yields (Liu et al, 2016; Domenikiotis et al, 2004; Dalezios et al, 2001), cotton 

growth monitoring (Bai et al, 2011; Zhao et al, 2007), or the detection of cotton crop stress (Reisig et al, 

2015), among others. 

Beyond the standard arrays of crop monitoring methodologies, more can be done to exploit the cotton plant’s 

unique phenological stages, using high-resolution remotely sensed data. Past research traditionally utilized 

low to medium resolution satellite images, such as the NOAA/AVHRR (1km), MODIS (250m), or Landsat 

(30m) imagery. It has been suggested that finer resolution allows for more precise extent delineations and 

observations (Mkhabala et al, 2011). This paper introduces the TripleSat Constellation, a trio of satellites 

capable of capturing multispectral imagery of up to 0.8-meter resolution within the visible-NIR wavelengths 

(21AT, 2015). This reveals greater feature heterogeneity on the ground, allowing for studies and analyses to 

be conducted with greater precision and efficiency. 

Objective 

This paper discusses the viability of using a color-based phenological index to monitor cotton’s changing 

spectral reflectance throughout its growth stages. A typical cotton plant undergoes stages of growth from 

seed planting to maturity, with changing characteristics (Cotton Australia, 2013). When the cotton boll 

approaches maturity, it will reveal the white cotton fiber underneath, enveloping the cotton field with a layer 

of white as it signals the start of the harvesting period. This period is important for farmers, as the cotton lint 

is susceptible to damages from fungi and rain once out in the open. Thus, timely and accurate knowledge on 

the boll opening period is useful for making management decisions on the plantations.  

Based on observations from different regional cotton plantations, the visible wavelengths captured by high-

resolution satellite imagery can serve as an indicator to cotton crop readiness, through monitoring changes 

along time series satellite data. Following an introduction to the study regions used in this research, the 

methodological approaches and results will be discussed, before evaluating the applicability and future 

potential of remote sensing and agricultural studies. 

STUDY REGIONS 

Australia 

As the world’s second largest cotton exporter (Cotton Australia, 2013), majority of the cotton plantations are 

located in the states of Queensland and New South Wales, where distinct wet/dry subtropical seasons prevail. 

Cotton seeds are generally planted during the start of the wet season in October/November, and picked 

between April to June when the climate turns drier. The plantations are usually rain-fed during the wet season, 

 

Figure 2: Study Region in Xinjiang, China 



although irrigation and water storage dams are also required due to cotton’s high water intake. The selected 

study area in Australia is in the Goondiwindi region, along the borders of the two states (Fig. 1), where large 

swaths of cotton plantations can be found. 

China 

One of the world’s largest cotton producers alongside India, China’s cotton production is largely centered in 

the Xinjiang Autonomous Region, though pockets of cotton fields can be found in Central China along the 

major river basins. The study area chosen is in the Aksu Prefecture of Xinjiang (Fig. 2), a cold desert climate 

with large seasonal temperature variations. Unlike Australia, the cotton crops here are planted in April and 

harvested by October. 

METHODOLOGY 

Satellite images were selected at regular intervals within each region’s growing seasons. To accurately 

capture the changing physical characteristics of the phenological stages, monthly or fortnightly intervals are 

more ideal (ACE, 2016). However, due to the lack of available cloud-free images from archives, the images 

were largely selected based on availability. In some cases, Landsat 8 OLI satellite images were used to 

maintain a regular time interval. Table 1 shows the dates of the images that were used for the study. 

 

Figure 3: Diagrammatic workflow structure of the research conducted 

Table 1: Date of satellite images used for each study region 

China Australia 

Date Day Number Date Day Number 

10th April, 2016 101 9th November, 2015 313 

28th May, 2016 149 25th November, 2015 329 

29th June, 2016 181 13th February, 2016 44 

16th August, 2016 229 29th February, 2016 60 

17th September, 2016 261 1st April, 2016 92 

3rd October, 2016 277 23rd April, 2016 114 

4th November, 2016 309 3th May, 2016 124 

  19th May, 2016 140 

  20th June, 2016 172 

  30th June, 2016 182 

    

 



The raw satellite imagery obtained were first cropped to the intended spatial extent within the. The digital 

numbers (DN) were then converted into radiance values (Lλ), using the following formula: 

𝐿λ= Gain ∗ DN + Bias 

The Landsat’s gain and bias values for individual scenes can be found in the respective metadata files (USGS, 

2017). For the TripleSat images, they were already pre-processed and converted into radiance values, and 

thus can be used directly. 

Peak vegetative signals for cotton crops are usually observed during the mid-late growth periods of a cotton 

cycle, corresponding to the emergence of squares (Liu et al, 2016; Bai et al, 2011). Normalized Difference 

Vegetation Index (NDVI) images were calculated from scenes that fall within this period for each region, 

which allows for the easier identification of cotton crops. 30 random points were then selected from the 

identified cotton plantations using the NDVI composites as masks. These points were used to extract the local 

pixel values from each satellite scene to produce a time series dataset. 

RESULTS 

Comparison of NDVI changes of time 

NDVI has been the standard go-to vegetation index for most crop monitoring studies (Son et al, 2014; 

Mkhabela et al, 2011; Robson, A., 2010; Dalezios et al, 2001). Figure 4 demonstrated how different rates of 

cotton growth can be observed through variations in NDVI values, especially in Goondiwindi. However, 

NDVI does not give conclusive signals with regards to cotton maturity, with a general downward trend for 

all plots following peak NDVI during mid-season. Thus, an alternative method is required to distinguish the 

boll-opening period for cotton. 

Comparison of VIS-NIR bands over time 

Figures 5 and 6 plot variations of individual spectral band (Blue, Green, Red, Near-infrared Red) along the 

time series for the 30 selected points in each study region.  

 

 

 

Figure 4: Changes in NDVI over time for Aksu (top) and Goondiwindi (bottom) 
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Figure 5: ToA radiance values of visible (Blue, Green, Red) and NIR bands over study period for Aksu, 

China 
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Figure 6: ToA radiance values of visible (Blue, Green, Red) and Near-infrared bands over study period for 

Goondiwindi, Australia 
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It was observed that while the NIR bands followed roughly the same trend as their respective NDVI curves, 

it was not the case for the visible bands. In fact, it was noted that all the selected cotton plantation points 

witnessed an increase in their visible spectral radiance values towards the end-season. For the Aksu study 

area, this increase was around late-September to early-October, which happened to be right before the 

region’s harvesting season in 2016 (Xinhua, 2016). Goondiwindi, on the other hand, with the presence of 

multiple small landownership, saw two different increases in the months of April and May, a likely result of 

different seeding timings and farming techniques. 

 

 

Figure 7: Percentage changes in ToA radiance values between scenes for each visible band for (from top) 
Aksu plots; Goondiwindi plots that register an increase in Day 114; and Goondiwindi plots that register an 

increase in Day 124 
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Figure 7 went on to evaluate the most viable visible band for distinguish cotton readiness, through comparing 

the relative changes in radiance values across the scenes, for each study region. An average radiance value 

for each scene per band was obtained, and plotted. The selected points in Goondiwindi were divided into two 

graphs to differentiate between plantations that had a visible spectral radiance increase in Day 114 (23rd 

April), and Day 124 (3rd May). The results showed that out of the three colored visible bands, the red band 

(600-670nm) had the largest percentage increase across all three areas during the suggested readiness period. 

DISCUSSION 

From the results in the previous section, the red spectral band in a multispectral satellite imagery appears to 

be the most viable indicator of cotton crop readiness. This is supported by the fact that during the period close 

to harvesting, the exposed cotton lint will have significantly different spectral reflectance as compared to the 

surrounding foliage or soil. The white surface due to the cotton lint is capable of reflecting more incoming 

solar radiation rather than absorbing for photosynthesis, thus allowing airborne satellites to capture this 

change. Out of the three visible bands in standard multispectral satellite like the TripleSat, red light registers 

the largest change, likely due to the fact that plants usually absorb relatively more energy within the red 

electromagnetic spectrum, and thus provide the strongest signal change. This paper suggests the following 

simple linear index as an indicator of cotton crop readiness: 

𝐶𝑜𝑡𝑡𝑜𝑛 𝑅𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 (𝐶𝑅𝐼) =  𝑅𝑒𝑑𝑖 − 𝑅𝑒𝑑𝑗 

where i is the current satellite scene, and j is the previous scene. This index applies to areas that are already 

identified as cotton farms and plantations, and redundant areas should be cropped out. 

To demonstrate the proposed index, the 1st April, 23rd April and 3rd May’s 0.8m resolution scenes in 

Goondiwindi were used to evaluate crop readiness in Day 114 and Day 124 (Fig. 8). From the results, three 

out of eight plots in the sub-area experienced positive CRI, while the other plots only saw this change ten 

days after, signaling that these plots were likely to be ready for harvesting earlier than their surrounding plots. 

In particular, it is noteworthy that this result also highlighted the possible alternate cotton strip planting 

practices in Australia: where conventional cotton is planted alongside transgenic cotton to discourage cotton 

pest growth (Cotton Australia, 2013). This can be seen from alternating strips turning “green” in the bottom 

plots between both dates. 

 

 

 

  

Figure 8: CRI applied on Day 114 (top) and Day 124 (bottom) in southern part of the Goondiwindi study 

area. Green area indicates positive CRI; white area indicates negative CRI. 



CONCLUDING REMARKS 

This research is part of an overall effort to better integrate the technology of high-resolution, remotely sensed 

multispectral imagery into the field of agricultural studies. Using the 0.8m resolution TripleSat imagery, this 

paper evaluated the usefulness of employing less-commonly used visible spectral bands to monitor the 

readiness of cotton crop in the regions of Australia and China. This strand of research can be further fine-

tuned and improved upon with more available datasets of alternative regions in the near future. 

As high-resolution images continue to be made available in different regions, it is possible to derive further 

useful insights and better monitoring strategies for agricultural purposes (Fig. 9). As such, the authors are 

continuously committed to engage further agricultural research through the lens of high-resolution satellite 

imagery.  

  
 

  
 

Figure 9: From top-left (clockwise): Blue-Green-Red composite; Green-Red-NIR composite; Soil Redness 

Index (hematite/iron content); NIR band. These images obtained at high spatial resolutions can potential 

reveal more detailed information beyond standard imagery, such as uneven growth or non-visible soil 

compositions. 
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