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ABSTRACT: A multi-objective evolutionary algorithm is utilized for the automatic detection of hydrodynamic 

turbulent boundaries overlying coral reefs. The procedure is implemented using sequences of Flock-1 satellite data 

acquired in the Red Sea. The study demonstrates that implementing Pareto - optimal solutions allows for the 

generation of accurate coral reef-water interface patterns. The Pareto-optimal front indicates a significant relationship 

between hydrodynamic turbulent boundaries, macroalgae, and coral reefs. In conclusion, MOEA which is based on 

Pareto optimal solutions can be used as an automatic detection tool for turbulent flow in data from the Flock 1 

satellites that are excellent sensors for studying shallow coral reef zones.  

 

1.  INTRODUCTION  
 

Until now, no study has implemented Flock-1 satellite data in oceanography applications. The Flock-1 satellite was 

launched on 9 January 2014, and the data holds great promise for a wide variety of Earth observations because its high 

spatial and temporal resolution. Consequently, this study is the first work to utilize Flock-1 data for turbulent 

hydrodynamic detection overlying coral reefs. Turbulent flow requires a short revisit satellite cycle and 

high-resolution data to provide precise information regarding turbulent hydrodynamic flow that is important for ship 

navigation, fishing, pollution transport and sediment transport. Nevertheless, the study of ocean turbulence is still at 

an early stage, and ocean turbulence studies are lost in other studies, for instance geostrophic currents, wave-current 

interactions, or sea surface temperature fluctuations (Rowlands et al. 2008).   

 

In shallow waters, the coral reef cover induces a turbulent flow, since the permanent coral boundary interrelates 

through friction with the superimposed water column. Under these conditions, a layer of shear flow is formed that 

then creates a turbulent wall or boundary layer, and the hydrodynamics of the turbulent bottom boundary layer next to 

the coral surface governs the vertical transport of mass between the coral surface and the water column (Reidenbach 

et al. 2007; Stocking et al. 2016).  The presence of an algal canopy increases turbulent kinetic energy within the 

roughness sublayer by ~2.5 times in contrasted with healthy corals while simultaneously decreasing bottom shear 

stress by an order of magnitude (Stocking et al. 2016).  

 

Remote sensing techniques are powerful tools for ocean feature mapping and monitoring. The measurement of the 

ocean from space is a function of the electromagnetic signal. The signal reflected from the sea carries information on 

the primary observable quantities, including the colour, the radiant temperature, the roughness, and the height of the 

sea. Visible waveband radiometers depend on reflected sunlight which is a function of the local time of day. The 

thermal fluctuations of the sea surface are measured in the thermal infrared and microwave parts of the radiation 

spectrum. Hence infrared and microwave radiometers are used to measure the radiation temperature of the sea 

surface, and the emissivity is used to approximate the physical temperature of the ocean (Bruckner et al. 2012). 

 

With the above concerns, we address the question of the ability of small satellites such as Flock-1 for investigating the 

impact of coral reefs for inducing turbulent current flow. Two hypotheses are examined: (i) low radiometric 

resolution data such as Flock-1 can be used for surface and benthic coral features detection, and (ii) such machine 

learning and intelligent algorithms are able to detect accurately the dynamic interaction between sea surface 

movement and benthic features such as coral reefs.  

 

The novelty of this work is to utilize Flock-1 satellite data for the automatic detection of sea surface turbulent flow 

using intelligent machine learning algorithms.  The main objective of this work can be divided into two 



sub-objectives: (1) To examine a Multi-Objective Evolutionary Algorithm (MOEA) for turbulent flow automatic 

detection in Flock-1 satellite data, and (2) to design a multi-objective optimization algorithm based on Pareto-optimal 

solutions for the automatic detection of turbulence. 

 

2. STUDY AREA  

 
Three study areas are selected because of the difficulty in acquiring Flock-1 satellite data. These study areas are (1) 

Farasan Islands, (2) Al Wajh Bank, and (3) Great Bitter Lake (Figure 1). 

 

2.1 Farasan Islands 

The Farasan Islands are located in the southern Red Sea platform of Saudi Arabia between 16° 5´–17°2´N and 41°5´– 

42°3´E. (Figure 1a)They are located approximately 40 km offshore Jizan City and 50 km away from the Red Sea axial 

trough. Within the tropical sector of the Red Sea, the Farasan Islands are the largest coral island group (about 128 

islands totalling 3000 km2 of land). Its largest islands are Farasan al-Kabir and Sajid (Douabul and Haddad 1970). The 

Farasan Islands have low topography (15 m a.s.l) with a maximum elevation of 75 m a.s.l.  

 

(a)                                                                          (b) 

        
 

(c ) 

 

         
Figure 1. Geographical locations of (a) Great Bitter Lake, (b) Al Wajh Bank and (c) Farasan Island. 

 

2.2 Al Wajh Bank 

In the northeast part of the Red Sea, the Al Wajh Bank is located around 25°35'N, 36°45'E (Figure 1b), offshore Saudi 

Arabia. Al Wajh covers an area of approximately 2,880 km2, 26 to 50 km offshore from the mainland and running 

parallel to the shoreline for approximately 50 km before turning landward at its northern and southern ends. 

 

 

The Al Wajh Bank contains inshore coastal habitations, a central lagoon with shallow grass beds, algal and mangrove 

communities, complex reef systems, and a plethora of islands. In the western side of the bank, seaward it is bounded 

by a widespread deep barrier reef of 500 m. The offshore zone between Al Wajh and Umm Lujj is formed by reef 

islands. Inland, the coastal zone is categorised by alluvial sand flats with several saltmarsh communities on the saline 

sandy flats near the shoreline and a number of wide wadi drainage systems. The dominant feature is the central lagoon 

which covers an area of approximately 1,400 km2, with a maximum depth of 30 to 40 m, becoming progressively 

shallower toward land. Extensive seagrass beds and tidal flats are found in the southern part of the Al Wajh bank. The 



dominant geomorphology features of the lagoon are numerous narrow channels with widths <200 m that link the 

inside and outside of the bank. Strong tidal currents are generated between these narrow channels and the open sea, 

although the tidal amplitude is less than 1 m along these channels (Rowlands et al. 2012).  

 
2.3 Great Bitter Lake  

 

The Great Bitter Lake (al-Buhayrah al-Murra al-Kubra) is a salt water lake which is part of the Suez Canal (Madl 

1999), and is connected to the Small Bitter Lake through which the canal also runs. Before the canal was built, their 

site was occupied by dry salt valleys. Together, the Bitter Lakes have a surface area of about 250 km². The canal also 

runs through Lake Manzala and Lake Timsah, north of the Bitter Lakes (Figure 1c). As the canal has no locks, sea 

water flows freely into the lake from the Mediterranean and the Red Sea. In general, north of the lakes the current 

reverses seasonally, being north-going in winter and south-going in summer. South of the lakes, the current is tidal, 

reversing with the tides in the Red Sea. Fish can migrate, generally in a northerly direction, through the canal and 

lakes in what is known as a Lessepsian migration; by this means some Red Sea species have come to colonize the 

eastern Mediterranean (Hoffman et al. 2006). 

 

3. DATA SETS 
Flock 1 is a US CubeSat satellite constellation launched on 9 January 2014. Each satellite is built in 3U CubeSat bus 

and is equipped with a camera capable of 3 m to 5 m ground resolution, and each constellation consist of 28 satellites. 

Furthermore, Flock1 has high temporal resolution, that is, weekly to daily with a moderate spectral resolution of 

visible spectra (RGG) 400 and 660 nm and near infrared (NIR) (700-900 nm) (Boshuizen et al. 2014). The 28 

satellites that make up Flock 1 measure just 12 inches long by 4 inches wide by 4 inches tall (30 by 10 by 10 

centimeters), but they can take images with a resolution of 10 to 16.5 ft (3 to 5 m). The satellites use an X-Band 

system for the downlink of acquired images and system telemetry at data rates of up to 120 Mbit/s. Flock1 orbits the 

Earth at a 52° orbit, continuously collecting images as it passes over the Earth’s surface which provides an insight into 

the dynamic changing environment (Manning et al. 2014).  

 

 

4. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM 

Following Marghany (2013a), the entire spectral signature of Flock 1 is { }1 2, ,..., kS S S , where K is the total number 

of spectral signatures in the Flock 1 data. Therefore, K is made up of genes which represent the spectral signature 

{ }S  of selected pixels and their surrounding environment, and genetic algorithms start with the population 

initializing step. 

Multi-objective Optimization (Deb 2001) and (Marghany 2014b) aims at conducting optimization for a range of 

functions as follows: 
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where I is Flock 1 data and Ω  is the definition domain of functions or the feasible region in decision space. In this 

research, two objectives are considered. One is the coral reef and second is turbulent hydrodynamics. 

 

Pareto optimal solutions are applied to retain the discrimination of turbulent flow spectral signature diversity and its 

surrounding reflectance environment (Marghany 2013a).  To optimize the turbulent flow spectral signature diversity 

automatic detection from Flock 1 data using MOEA, the turbulent flow spectral signature diversity must be coded into 

a Genetic Algorithm syntax form (Marghany 2014a). In this way, the turbulent flow spectral signature diversity is 

coded into the chromosome form. In this problem, the chromosome consists of a number of genes where every gene 

corresponds to a coefficient in the nth-order surface fitting polynomial that can be calculated as: 
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where T [0,1…..m] are the turbulent flow spectral signature diversity parameter coefficients that will be estimated by 

the genetic algorithm to approximate the minimum error for turbulent flow  spectra signature diversity discrimination 

from surrounding environment. 

 

Lastly, the group of classified individuals is removed from the population and another layer of non-dominant 

individuals is considered (the remainder of the population is re-classified) (Marghany 2013b). The process continues 

until all the individuals in the population are classified. Since individuals in the first front have maximum fitness 



value, they always get more copies than the rest of the population. This allow us to search for non-dominated regions, 

and results in convergence of the population toward such regions. Sharing, on its part, helps to distribute the 

population over this region. 

 

5. RESULTS AND DISCUSSION  

Figure 2 shows the variation of the average spectral signatures of three Flock-1 data. The macroalga has the lowest 

reflectance value, then coral and sediment (Figure 11a). In contrast, ships have the highest reflectance value of 0.99 .  

Both Al Wajh Bank and the Farasan Islands have sandy shores, mangroves, and algal flats which reach their 

maximum extent near the coastline, with reefs restricted to offshore locations. This confirms the study of Marghany 

(2015). It is interesting to find that the Flock 1 satellite can imagine ships and their wakes because of its high 

resolution of 3 to 5 m (Manning et al. 2014).  

 

Figure 2. Spectral reflectance of Flock 1 satellite data for different features. 

 

The proposed method for the automatic detection of turbulent hydrodynamics overlying coral reefs has been applied 

to generate spectral reflectance from three Flock 1 satellite data sets (Figure3). In the initial stages, the standard errors 

are increased with high population numbers of 35400, 24523 and 24202, respectively. At the initial stage, there are, 

however, no distinct features in Flock 1 data. Consequently, the random generation patterns are dissimilar among the 

three images due to various objects and variable spectral signatures of inconstant objects in each image.  This 

confirms the work of Marghany (2014a). 

                                           (a)                                                            (b) 

   

                                                                                          (c ) 

 

Figure 3. Random generation of Folck1 satellite data for (a) Great Bitter Lake, (b) Al Wajh Bank and (c) 

Farasan Island.  
Notably, the Pareto optimal solution is able to define the turbulent hydrodynamics overlying coral reef boundaries and 

provides an excellent discrimination of turbulent boundary pixels. Macroalga is floating and directed by the 

hydrodynamics of the turbulent boundary layer (Figure 4).  This is clearly shown in both Al Wajh Bank and Farasan 



Island because the coral reefs exist at water depths less than 15 m. For instance, the shallow sand sheets, windward 

and leeward coral crests, microalgae, sponges, and sandy hardgrounds are dominant in the Saudi Arabian Red Sea. 

The results confirm those of Bruckner et al. (2012).  

 

Figure 4. Pareto optimal solution for Flock1 images of (a) Great Bitter Lake, (b) Al Wajh Bank and (c) 

Farasan Island. 

 

6. CONCLUSIONS  

 

This study demonstrated the design of tools for hydrodynamic turbulent boundary detection in Flock 1 satellite data 

using a Multi-Objective Evolutionary Algorithm (MOEA). Flock 1 satellite data that were acquired in the Great Bitter 

Lake, Egypt and Red Sea in Saudi Arabia, that is, Al Wajh Bank and Farasan Island, were investigated in this study. 

The study demonstrated that Pareto-optimal solutions and fitness functions used in the MOEA allowed for the 

generation of precise hydrodynamic turbulent boundary patterns using the Flock 1 data. The MOEA exhibited 

excellent performance with respect to this boundary, macroalaga, and coral reef classifications in Flock 1 data. 
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