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ABSTRACT:  Forests occupy about one-third of the land area of the earth and have been playing crucial role in regulating 

the adverse effect of increased emission of greenhouse gasses. Tropical rain forests have higher capacity to sequester 

carbon dioxide and hence play a role in stabilization of the concentration of greenhouse gasses in the atmosphere. Forest 

inventory parameters require accurate information for biomass and carbon stock estimation. However, acquiring of forest 

inventory parameters data especially tree height for estimation of biomass and carbon stock is often a major challenge in 

tropical forest. A conventional method that is data acquisition using handless tool is tiresome, labor intensive, not 

applicable in large area and cumbersome approach due to the complexity of tropical forest. On the other hand, data 

collection using LiDAR technology, is expensive and therefore not readily available. However, rapid advancement in 

photogrammetry technology in both hardware (i.e., Unmanned Aerial Vehicle) and software (i.e., image matching 

algorisms) led on data acquisition of fine spatial resolution imagery of less than a meter with notably improved revisit 

time at affordable cost. Therefore, this study aimed to assess the accuracy of measuring tree height using drone in 

comparison to that of Airborne LiDAR and assessing its effect on estimating forest biomass and carbon stock. 

 

1.0 INTRODUCTION 

 

1.1  Background 

 

Forests occupy about one-third of the land area of the earth and play crucial role in regulating the adverse effects of 

increased emission of greenhouse gasses in the atmosphere. Trees and forests play an important role in human livelihoods, 

as well as in ecosystem services and health. Among ecosystem services offered by the forest include regulation of 

hydrological cycles, mitigation of global climate change, recreation and biodiversity conservation. Therefore, sustaining 

these services under increasing community demand depends on effective forest management, which is in turn based on 

concrete scientific understanding of the natural processes of carbon cycling. Forests play a crucial role in the global carbon 

cycle, and forest vegetation and soils comprise about 60% of the total terrestrial carbon stock. Furthermore, Gibbs et al. 

(2007) emphasized that forests sequester and store more carbon than any other terrestrial ecosystem and therefore play 

potential role in regulating the effect of climate change. 

 

The role of tropical forests in global climate change, especially the carbon cycle and its relation to the greenhouse effect, 

has increased interest in estimating the biomass density (Henry et al., 2011). Because of their high carbon density, tropical 

forests are increasingly viewed as the place for mitigation of climate change. In an effort to reduce deforestation and 

degradation by creating monetary value for the carbon in forests, the United Nations Framework Conversion on Climate 

Change (UNFCCC) introduced Reduce Emission from Deforestation and Forest Degradation (REDD+) program in 

developing countries as strategy to regulate the effect of greenhouse gasses in the atmosphere (Gibbs et al., 2007). One 

important component of REDD+ is Measuring Report and Verification (MRVs). This mechanism refers to prolonged 

measurement and collection of data on the anthropogenic forest related greenhouse gas emissions. In addition to that 

Henry et al. (2011) argued that because of interest in the global carbon cycle, estimating aboveground biomass with the 

required accuracy to establish the increase or decrease of carbon stored in forests is very important. However, they stated 

that the largest errors in estimates of the terrestrial carbon balance are believed to result from uncertain rates of tropical 

deforestation. 

 

According to Angelsen (2009),  global initiative aimed to reduce the impact of climate change through establishing 

reducing emissions from deforestation and forest degradation, and enhancing forest carbon stocks in developing countries 



(REDD+) which involve payment for environmental services (PES). The UNFCCC signed by 150 countries to 

conventionally commit to have an update, publish and make available their national assessment of the forests, however, 

the current review indicated that very few countries meet the minimum ability needed for MRVs (Angelsen, 2009). Most 

of developing countries have limited capacity to assess accurately their biomass and carbon stock.  Nabuurs et al. (2008) 

explained that for biomass and carbon estimation, the inventory-based approach is conducive and reliable. Therefore, 

REDD+ established measurement report and verification (MRVs) as a way to quantify biomass pools in which above 

ground biomass is the part of it. In order to assess above ground biomass and carbon stock REDD+ through MRVs require 

accurately data measurements of the forest parameters, which is important for accurately estimation of the AGB and 

carbon stock (IPCC, 2014). The accurate methods on estimating AGB in REDD+ scheme especially on evaluating the 

baseline for national carbon has been stated by (Gibbs et al., 2007;  Chave et al., 2014). 

 

1.2  Research Problem 

 

Tree height and Diameter at Breast height (DBH) are important parameters of the forest that used as input in the allometric 

equation for quantification of forest biomass and carbon stock.  Andersen et al. (2006) reported that tree height is one of 

essential variable in the quantitative assessment of forest biomass and carbon stocks. The estimation of biomass and 

carbon stock, inclusion of tree height in the model can significantly improve the accuracy of estimating carbon stock.  

Tree height can be estimated in forest stand, however, the activities would be tedious, time-consuming and costly. 

Previous work has shown that the inclusion of height in biomass allometries, compared to the sole use of DBH, would 

significantly improve biomass estimation (Hunter et al., 2013). Several studies have been carried out to measure or 

estimate tree height. These techniques range from traditional field work using hypsometers to the more advanced 

approaches of using remote sensing. In the traditional field work, measuring tree height is generally more cumbersome 

and time consuming due to intermingling of the crown of the trees. Direct measurement of forest parameters for estimation 

of aboveground biomass is expensive and therefore the measurements are limited to 10-year intervals (Houghton, 2005). 

In the controlled field experiment which was done prior to this research where observers were measuring tree height at 

different distance from the tree, it was revealed that there were variations in tree height measurements reported by different 

observers. The error was attributed to the increase in the distance from the tree, obscured of tree top due to occlusion of 

the crown of the tree.  

 

In remote sensing, Airborne LiDAR System (ALS) has been used as a fundamental remote sensing technique to estimate 

tree height and consequently carbon stock. ALS and space satellite are remote sensing technique which has been used to 

estimate aboveground biomass and subsequently carbon stock.  Sadadi (2016) reported that ALS was considered the most 

accurate and efficient way of assessing field measured tree height and subsequently biomass and carbon stock.  His results 

revealed that RMSE of the field measured tree was 4.2 m (21.45%) when compared to ALS estimated tree height and 

coefficient of determination was 0.61. The fact that ALS is the most accurate and efficient way of assessing tree height 

provided reliable DTM is available, but LiDAR is an expensive tool and therefore not readily available.  

 

Recently, advances in photogrammetry image matching of UAV 3D point cloud extraction technology from very high-

resolution images potentially offer a cheap and flexible alternative for ALS.  Fritz et al. (2013) stated that, compared to 

other platforms such as airborne sensors, UAV shows comparatively low costs for acquisition of information and high 

flexibility with Unmanned Aerial Vehicles (UAVs) devices led to intense research in this field. Currently, UAVs have 

developed to off the shelf platforms for remote sensing applications and photogrammetric data acquisition (Fritz et al., 

2013). UAV provide extremely fine resolutions and thus allow the identification of previously undetected object details, 

and images are rarely affected by cloud cover because flying altitudes are usually low. Flight missions can be timed very 

flexible and they are very cost-effective (Getzin et al., 2012; Fritz et al., 2013). UAV imagery is characterized by a high 

image overlap and therefore, has the potential to accurately model the canopy surface and tree height at a very high spatial 

and temporal resolution (Lisein, et al., 2014). Many types of research have been done in estimating AGB using UAV in 

temperate forest and very little in tropical forest. Limited numbers of research have been comparing UAVs from ALS 

and assess its accuracy in AGB estimation, especially in tropical forest. The main objective of this research is to 

investigate the accuracy of tree height extracted from 3D point clouds of photogrammetry image matching or Structure 

from Motion (SfM) of UAV images in comparison to tree height measured with ALS data and assessing its effect on 

estimation of biomass and carbon stock.  
 

1.3 Study Area 

 

This research was carried out in Ayer Hitam Tropical Forest Reserve which is located in the state of Selangor, Peninsular 

Malaysia (Figure 1). The study area was selected in order to demonstrate the applicability of the Structure from Motion 



technique in comparison with LiDAR in estimation of tree height and consequently biomass and carbon stock in tropical 

forest. This is because of the fact that many study have been conducted in the temperate forest. Limited researches have 

been conducted in tropical forest. Additionally, availability of ALS in Ayar Hitam Forest Reserve was important for area 

consideration.  Geographically Ayer Hitam Forest Reserve lies between Latitude of 2°56’N - 3°16’N and Longitude of 

101°30’E - 101°46’E. It is 20 km and 45 km away from University Putra Malaysia (UPM), and from the city of Kuala 

Lumpur respectively (Hasmadi et al., 2008). According to Nurul-Shida et al., (2014), Ayare Hitam Forest Reserve is 

among three left lowland dipterocarps tropical forest reserve in Klang valley. It is currently surrounded by residential 

buildings and modern infrastructures which make it isolated and hinder ecological connectivity with another forest. Since 

1996 the forest has been leased to the Faculty of Forestry, University Putra Malaysia by Selangor State Government. 

Initially, Ayare Hitam Forest Reserve was logged. The main reason was encroaching forest area for other development 

activities such as building residential areas, new township, factories highways, agriculture activities and over exploitation 

of forest resources for social economic development projects (Nurul-Shida et al., 2014) . Ayare Hitam Forest Reserve 

was logged-over forest, however, now is yet to attained its restoration state.   It is the only lowland forest reserve found 

in Selangor state so far, at the beginning the forest area was 4270.7 ha in 1906, however, the remaining forest is 1248 ha 

which has 6 administrative compartments (Nurul-Shida et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Location map of the study area 

 

2.0  MATERIALS AND METHODS  

2.1  Data Used   

In this study, three main datasets were acquired, which include UAV, Airborne LiDAR and biometric datasets. The UAV 

data were acquired by using Phantom-4 DJI, after placing ground control points. The acquired UAV stereo images were 

used to generate photogrammetric products such as digital surface model, digital terrain model and ortho-mosaic images. 

The available airborne Lidar Dataset was also used to generate height canopy model from subtraction of DTM from DSM. 

The biometric dataset was collected by using field equipment such as diameter tape, Leica DISTO 510, global position 

system and measuring tape.  

 

2.2 Methods 

The methods in this study consist of four parts (Figure 2) namely: 

1. UAV data acquisition and processing 

2. LiDAR data processing 

3. Field data collection and process 

4. Comparing results and sensitivity analysis 



 Figure 2. Flowchart of the methods used in this research 

The UAV dataset used in this study consists of the imagery acquired in six areas in Ayare Hitam Forest Reserve. The 

flight areas were identified based on the availability of open space for placing ground control points and the time the 

UAV can be airborne in relation to the battery capacity. The Pix4D (capture and Pix4D Ctrl DJI) smartphone based 

software was used for preparation of UAV flight plan. For all six flights, the parameters used in collecting the images are 

listed in Table 1. Figure 3 shows the UAV flight planning areas and UAV settings.  

 

A Ground Control Point (GCP) is a marking on the ground where x, y and z were measured with high precision using 

Differential Global Position System (DGPS). Accurate GCP are required for the geometric correction of the UAV images.  

In this study UAV flight areas were identified in such a way that all areas have had enough open spaces at its corner point 

for placing ground control.  Ground control points were marked on the ground using white and black spray paint to 

provide good contrast and ensure visibility in the UAV images when it was flying at 80 m altitude. The GCP were marked 

in every corner of the identified flight areas, four points were marked in each flight. 

 



 

 

Table 1. Parameter used for UAV data collection 

Parameter Value 

Speed Moderate 

Angle 90 (Nadir) 

Overlap 80% 

Side Overlap 60% 

Altitude Area 1 till 4 and 6 80 m 

Altitude area 5 90 m ( to avoid collision with surrounding buildings) 

 

 

 

 

 

 

 

 

 

 

Figure 3. UAV flight mission and parameters set in the study area. 

Processing of images with Agisoft PhotoScan consists of the following steps: 

 loading photos into PhotoScan, inspecting uploaded images, removing unnecessary images,  

 aligning photos,  

 building dense point cloud,  

 building DSM,  

 building, ortho mosaic  

 building DTM   

The building of dense point clouds allows calculation of depth information, which is required for the generation of ortho-

mosaic images, DSM and DTM. In order to achieve the best possible geometric accuracy the “high quality” setting of the 

software was applied. After building the dense point clouds and 3D polygonal model the software can generate a Digital 

Surface Model (DSM), Orthomosaic image and Digital Terrain Model (DTM) (Figure 4 a,b&c). A DSM represents a 

surface model as a regular grid of height values. DSM can be rasterized from a dense point cloud, a sparse point cloud. 

A software enables to perform DSM based point, distance, area, volume measurements as well as generate cross -sections 

for a part of the scene selected by the user. The building up of ortho-mosaic image was important because mosaic image 

was used in onscreen segmentation process and matching of individual trees. This was possible because the ortho 

mosaicked image had very high resolution. 

 

AGISOFT software allows for the automatic generation of a digital terrain model (DTM). In this process, dense point 

clouds were classified into two classes viz “ground” and “the rest”. The technique of identifying ground points from 3D 

point clouds is often referred to as ground filtering or bare-earth extraction (Wang et al., 2009). 



 

 

 

 

 

 

 

Figure 4.  DSM (a), Orthomosaic (b) and DTM (c) for first flight 

 
3.0 RESULTS AND DISCUSSION 

 

3.1 DTM and Tree Height Assessment 
 

The relationship between Airborne Lidar and photogrammetric image matching DTM were established in order to assess 

the influence of photogrammetric image matching error in tree height estimation. This was done by comparing tree height 

measured by ALS and tree height estimated by photogrammetric image matching at a point where photogrammetric image 

matching DTM was close in height (RMSE = ±0.19 m and RMSE% = 0.5%) to Airborne LiDAR DTM. At this point, 93 

trees were used to evaluate the effect of differences in tree height. The relationship was explained by correlation 

coefficient and coefficient of determination which was 0.89 and 0.799 respectively. The RMSE of the tree height to UAV 

estimated tree height was 1.56 m and 8.7%. The summary of the relationship and comparison of the estimated tree height 

based on the area where photogrammetric image matching and Airborne LiDAR DTM had small difference was indicated 

in the Table 2 and Figure 5.  

 
 

Table 2: Comparison of UAV and ALS tree height where UAV and ALS DTMs have slight difference in height 

Statistics ALS and UAV close altitude ALS and UAV tree height 

Correlation Coefficient  0.995785479 0.894274068 

R Square 0.99158872 0.799726108 

Adjusted R Square 0.991496288 0.797525296 

Standard Error [m] 1.008903101 1.505570224 

Root Mean Square Error [m] 0.190367513 1.561653393 

RMSE% 0.539068939 8.707791154 

Observation 93 93 

 
The t-test assuming equal variance was done to compare the mean of the DTM height (altitude) of ALS and 

photogrammetric image matching. The results revealed that at (p< 0.05) there was no significant difference between 

height of ALS DTM and UAV. Likewise, in the same area t-test results revealed that at (p< 0.05) there were no significant 

difference in the mean of tree height measured by ALS and that estimated by UAV in the point where UAV DTMs had 

RMSE and RMSE % of RMSE = ±0.19 m and RMSE% = 0.5 respectively.   

 
3.2 Tree height Accuracy Assessment  

 
In this study, the total number of 388 matched trees was used to assess the relationship between Airborne Lidar and UAV 

estimated tree height. The model of fit was developed. Airborne Lidar and UAV derived tree height was considered to be 

independent and dependent variable respectively. Then Airborne Lidar was used to predict photogrammetry image 

matching estimated tree height. The coefficient of determination (R2) of 0.785, standard error of 1.72 and RMSE of ±1.71 

 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Relationship between ALS DTM height and UAV DTM height 

m was obtained (Table 3). The model indicated that when the independent variable was zero (0 m) the dependent variable 

was 1. 22 m (intercept). In addition to that the linear equation showed that the regression coefficient (slope) for Airborne 

LiDAR was 0.8678 m. This coefficient indicated that for every additional 1 meter in Airborne LiDAR estimated tree 

height we expect photogrammetry image matching of UAV estimated height to increase by the average of 0.8678 m 

(Figure 6).   

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6. Scatter plot of the relationship between UAV and Airborne LiDAR 

 
Table 3.  Descriptive statistics for Lidar and UAV tree height 

Statistics Airborne LiDAR Estimated Tree Height [m] UAV Estimated Tree Height [m]  

Mean 19.07989691 17.78212556 

Standard Deviation 3.781678666 3.703073032 

Minimum 11 10.15921021 

Maximum 35 35.70339203 

Count 388 388 
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In total, 388 trees were estimated by photogrammetry measurements. The mean tree height estimated was 17.78 with the 

standard deviation of ±3.7 m and trees height was ranging from 10.16 m to 35.7 m minimum and maximum respectively. 

Then, photogrammetry measured tree height was validated using ALS. Thus when UAV tree height was regressed with 

ALS derived tree height, R2 of 0.78 was obtained. This indicated that the variation in tree height estimated by UAV was 

explained by ALS tree height by 78%. This implies that there was strong relationship between height derived from ALS 

and that of UAV.   

 

The accuracy assessment of UAV tree height was evaluated by using tree height derived from ALS and the RMSE of 

±1.7 m (RMSE=9.6%) was obtained. This study is comparable to the study conducted by Wallace et al. (2014) in Australia 

native forest stand in which in their study 112 trees out of 136 measured trees which had spatial detailed on the upper 

canopy where captured by UAV. The study revealed that when photogrammetry tree height was regressed against field 

measured tree height showed R2 of 0.63 and RMSE was ±1.30 m (Figure 40). The small difference existed was attributed 

to the difference in the complexity of the forest. On the other hand this study was comparable to the study done in 

Maryland USA by Dandois & Ellis (2013) which stated that accuracy of field tree height and photogrammetry measured 

tree height had coefficient of determination ranging from 0.63 to 0.84 with 155 points/m2 while in his study the point 

cloud density was ranging from 50 to 254 points/m2. 

 

This result is comparable with the results obtained by Lisein et al. (2014) done in a mix of uneven-aged broadleaved 

stands with a predominance of Oaks (Quercus robur and Quercus petraea) and some even-aged coniferous stands where 

tree height ranged from 10.5 to 29.4 m, with an average of 22.3 m. The error was attributed to the fact that point clouds 

of UAV could not penetrate to the ground. This result is comparable to the study done by Balenovi et al. (2015) in 

temperate forest where they reported that RMSE and RMSE % range from ±0.31 to ±5.27 m and 10 to 28.5% respectively 

for sub-compartment 16a, 17a, 17b, 18a, 18b, 20a, 20b, 20c. Likewise in the study done by Lisein et al. (2014) revealed 

that regression model performed quite well, it predicted individual trees height with an RMSE of 4.7% (±1.04 m, R2 of 

0.91) based on photo-CHM (Table 4), the RMSE was less than that obtained in this study because they studied temperate 

forest (more point clouds at the ground because forest was opened). Unlike this study which was done in tropical rain 

forest. 

 

Table 4.  Comparison of individual tree height models (n = 86) based on photo-CHM and LiDAR-CHM metrics. 

CHM R2 Adjusted 

RMSE 

[m] RMSE % 

Photo-CHM 0.91 1.04 4.7 

LiDAR-CHM 0.94 0.83 3.7 

Source: Lisein et al. (2014) 

 

3.3 Biomass and Carbon Stock Assessment 

  

The above ground biomass of the measured tree height, estimated tree height of UAV was computed and compared with 

that of Airborne LiDAR. The equation used to compute AGB was developed by Chave et al. (2014), the equation utilizes 

DBH, average wood density as suggested by Reyes et al. (1992) and tree height as input parameters. This is because of 

the fact that using the local equation of Yamakura et al. (1986) and Kenzo et al. (2009) which utilize only DBH as  input 

in allometric equation to calculate AGB yield low value. Additionally Gibbs et al. (2007) suggested that the uses of local 

and regional allometric equations are not appropriate. However, the uses of generic equations is suitable because the 

development of trees were based on large number of trees (Gibbs et al., 2007; Chave et al., 2014). Extensive studies have 

been done to assess the accuracy of estimating tree height which provided superior results in forest (Wallace et al., 2014; 

Popescu, 2007).  

  

In this study the accuracy assessment of the biomass of UAV and field measurements was done by using AGB computed 

from ALS. When AGB computed from UAV validated by AGB of ALS the results revealed that coefficient of 

determination (R2=0.99), RMSE was 0.06 Mg and RMSE% was 13%. The R2 indicated that, 99% of AGB of UAV was 

explained by ALS. Also RMSE of 13% Mg showed average error of predicting AGB in UAV. On the other hand the 

validation of field biomass revealed that R2, RMSE and RMSE% was 0.96, 107 Mg and 24% respectively. The coefficient 

of determination (R2) indicated that 96% of variability in estimating of AGB of field was explained by ALS estimated 

AGB. The average error of modeling of AGB of the field was 24%. For the total of 388 matched trees, the total amount 

of biomass computed from ALS was 189.49 Mg, 177.13 Mg for UAV and 172.97 Mg for measured tree height. This 

result is comparable to the results of Sadadi (2016) which reported the AGB of ALS, TLS and field were 179.85 Mg, 



170.86 Mg and 146.33 Mg  respectively for 312 total trees. Furthermore t-test indicated that at p<0.05 there was no 

significant difference in biomass estimated by ALS and that of field and UAV. 

 

The computation of carbon stock was based on the amount of biomass which was calculated. The carbon stock is 

approximated to 50% of the biomass in the tree. The mean carbon stock for tree derived from Airborne LiDAR was 0.229 

Mg, 0.215 Mg for UAV and 0.209 for measured tree height. This implies that there was loss in carbon stock. This result 

is comparable to the study  done by Sadadi, (2016) who reported 0.27 Mg , 0.26 Mg and 0.22 Mg for LiDAR, TLS and 

Field respectively. However, most of the study reported the carbon stock for the whole study area. 

 

4.0 CONCLUSIONS 

 

 The tree height estimated from UAV data and field measured tree were regressed with ALS derived tree height 

for validation and accuracy assessment. When tree height derived from photogrammetry matching of UAV was 

regressed against ALS measured tree height the coefficient of determination (R2) obtained was 0.78 and tree 

height derived was accurate by 90.37% (RMSE = ±1.7 m, RMSE%= 9.63), this implies that 90.37% of the tree 

height derived from UAV data was accurately estimated. 

  

 The ANOVA revealed that there was variation in the means of tree height derived from the CHM of ALS, UAV 

and measured tree height. Following up the ANOVA test the t-test found that there was a significant difference 

in the means of the tree height derived from ALS, UAV and measured trees from field.  

 

 The amount of AGB estimated by the ALS was 189.49 Mg of AGB derived from Airborne LiDAR. On the other 

hand, the AGB of estimated UAV total matched sampled trees were 177.13 Mg for UAV while the AGB which 

was estimated by field was 172.97 Mg. This implies that UAV and field approaches underestimated biomass 

and carbon stock. Furthermore t-test revealed that there was no significant difference in the means of the AGB 

and carbon stock derived from ALS, UAV and field measured trees.  

 

 ALS approach to estimate biomass was considered to be more accurate in estimating AGB because it was able 

to see the trees at the top and had accurate DTM. Tree height estimated by photogrammetry image matching 

point clouds or SfM and tree height measured from the field were adjusted based on RMSE obtained when 

validated by ALS derived height. The results revealed that biomass was sensitive to the differences in tree height 

measurements. 
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