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ABSTRACT 

We present forest disturbance detection using time-series MODIS NDVI (2000-2014) data for Michoacán state, 

Mexico. First, we carried out a data preprocessing by applying a quality layer (QA), a spline interpretation and a 

Savitzky-Golay filter. Then we applied the method Bfast monitor (Verbesselt et al. 2012) for the detection of 

forest disturbance. Bfast monitor decomposes the time-series data into harmonic function, trend and remainder 

(noise).  It works by first constructing a linear function using data from a presumably stable period. It applies a 

moving sum to detect a breakpoint where a change occurred, and calculates a change magnitude by the 

difference between the observed and the predicted NDVI values at the breakpoint. In our case, we manually 

defined the data from 2000 – 2007 as reference period, and data of 2007 – 2014 as change detection period, and 

forest disturbances were detected spatially and temporally by combining the maps of break points and change 

magnitude. We define a forest gain as a positive change magnitude larger the threshold 0.05 and a forest loss as 

a negative change magnitude smaller than -0.05. We compared the results with the changes derived from high 

spatial resolution land-cover maps (10 m) from 2007 and 2014. NDVI time-series detected less changes than the 

reference data, ranging from 46% - 48%. On one land, MODIS does not detect changes smaller than 6.25 ha, on 

the other hand, MODIS time-series detects more than land cover change, such as deforestation, but degradation 

as well, which is forest that remains as forest. However, the separation of both is still an unsolved problem, with 

no proved relation between magnitude and change categories.  

1. INTRODUCTION 

Forest disturbance affects forest structure, carbon budget, and forest ecosystem processes. Both natual and 

human induced disturbances have undesirable impacts on forest functions, leading to deforestation and forest 

degradation. Quantifying forest degradation with remote sensing data remains a challenge due to many factors 

ranging from the lack of agreed definition to the lack of data with sufficient spatial resolution and a proper 

methodology to quantify forest degradation in forest which remains as forest (Putz and Redford 2010; Morales-

Barquero etal., 2014).  

Time series analysis with dense satellite image product such as NDVI, can monitor the trajectory of forest 

changes and provide spatial and temporal forest disturbances data, which might shed light on the quantification 

of forest degradation with remote sensing data (Shimizu et al., 2016).  

In this paper, we intend to detect and quantify forest disturbance with time series MODIS NDVI data for 

Michoacán, Mexico (2000 – 2014), with the assumption that forest disturbance is manifested in the value of 

NDVI, and positive change relates to the gain of forest and negative change relates to the loss of forest.  

2. METHODOLOGY 

2.1 The study area 

The state of Michoacán is located in western Mexico (figure 1). It is rich in tree species: 37 species of genus 

Bursera in the tropical dry forest, 35 of genus Quercus, and 15 of genus Pinus in the oak and coniferous forest.   
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Figure 1. Map of location for the study area, in Michoacán state, Mexico.  

2.2 Data:  

We obtained time-series MODIS NDVI (2000 – 2014) from page http://e4ftl01.cr.usgs.gov. The NDVI data 

from the product MOD13Q1 is a composition of the best observations for a period of 16 days with a spatial 

resolution of 250m. Pixels contaminated by clouds and taken when the sensor is outside of the nadir position are 

considered as bad quality in comparison with the pixels that are free of clouds and atmospheric effects and are 

taken when the sensor is in nadir position. The applied algorithm conserves only the filtered data with good 

quality, however, not all the abnormalities are removed and for this, there exists a quality layer (QA-SDSs) 

which contains a summation of those abnormalities (Didan & Huete, 2006).   

Land cover maps from 2007 and 2014 produced by using high spatial resolution images of SPOT were used as 

reference data (reference).   

2.3 Data preprocessing 

The preprocessing comprises two steps; the first is to apply QA-SDSs available for each time-series NDVI data, 

and the next is to fill the gaps where the pixels have been filtered out (Julien and Sobrino, 2010; Geng et al. 

2014).  

2.3.1. Data filtering by QA layer. The quality layer is a data of 16 bits, describing the quality of each pixel 

(https://www.ctahr.hawaii.edu/grem/mod13ug/sect0005.htm). The bits 0-5 describe the general quality, and the 

bits 6-15 describe the quality in a more specific manner. For this analysis, we consider the bits for general 

quality, utility, clouds, land/water mask and shadow. All the pixels that have bits for general quality of 00 are 

assigned as valid pixels, otherwise, they are further tested if the bits for general quality are 11, and if yes, those 

pixels are assigned as not valid pixels, otherwise, those pixels are considered for utility with bits combinations 

of 0000, 0001, 0010, 0011, 0100, 0101. The pixels with bits that do not fulfill with any of those combinations 

are assigned as not valid pixels, and those that are fulfilled continue with the test of clouds with bit 0, and 

land/water 001, and shadow 0. Fulfilled pixels are assigned as valid, otherwise not valid.   

2.3.2. Interpolation and Salvinsky-Golay filtering. The processing with QA layer left gaps in the time-series 

data, and they were filled by a spine interpretation. Due to the clouds, atmospheric conditions, and bi-

odirectional effects there were still noises even after the processing with QA (Chen et al. 2004), and a Savitzky 

Golay filter was applied (Wei et al. 2016).  

https://www.ctahr.hawaii.edu/grem/mod13ug/sect0005.htm


The Savitzky Golay filter (1) applies a simplified least squares fit convolution (Chen et al 2004).This filter can 

be applied to any consecutive data with fixed data points and uniform interval. 

𝑌𝑗∗ =
∑ 𝐶𝑖𝑌𝑗+𝑖𝑖=𝑚

𝑖=−𝑚

𝑁
                                             (1) 

Where 𝑌𝑗 is the original NDVI value, 𝑌𝑗∗ is the filtered value, 𝐶𝑖is the coefficient for the 𝑖𝑡ℎ NDVI value of the 

filter, and 𝑁 is the number of convolution integers and is equal to the smoothing window size (2𝑚 +1). The 

Index j is the running index of the original ordinate data table, and 𝑚 is the half-width of the smoothing window.  

2.4 Bfast Monitor for time-series change detection 

Bfast monitor is an algorithm to detect forest cover change (Verbesselt et al., 2012a, b), based on breaks For 

Additive Seasonal and Trend (BFAST, Verbesselt et al., 2010a, b). BFAST was designed to detect disturbances 

in the entire time-series data t = 1, …, n, while bfast monitor looks at if the new observations t = n, 

n+1, …continue the expected tendency of the historical data t = 1, …n. It works by identifying and modeling 

automatically a stable historical data, and then detect the changes in the new observations (Verbesselt et al. 

2012b). The period of time-series data for change detection is named detection period. The abrupt changes are 

identified in function of historical period defined as the range of data before the detection period. The historical 

period may not represent a stable trend. A historical period that is representative or stable by definition are free 

of abrupt changes, and used as reference period for the change detection of the detection period. There are three 

steps involved in bfast monitor: 1) identify a stable reference period; 2) model the stable reference period; 3) 

analyze the data in the detection period for abrupt changes.  

2.4.1. Seasonal and trend modeling. Bfast monitor models time series data with three components: a seasonal 

component, a trend component, and error (2),  

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝜀𝑡               (2) 

𝑇𝑡 =∝1+∝2 𝑡                     (3) 

The equation (3) corresponds to trend, ∝1 is the intercept, and ∝2 is the slope of a linear model.  

𝑆𝑡 = ∑ 𝛾 sin(
2𝜋𝑗𝑡

𝑓
+ 𝛿𝑗)𝑘

𝑗=1      (4) 

The equation (4) is harmonic function representing seasonal component, where 𝛾 is the amplitude, 𝛿𝑗  is the 

phase, 𝑓 is the frequency by unit of time (e.g. 𝑓 = 23 annual observations for a time-series of data every 16 days 

for a year) and 𝑘 is a constant defined by the user.   

 𝜀𝑡 is the error that cannot be explained by either the harmonic or trend function.  

2.4.2 Change detection. Applying the equations (2, 3, 4), it is possible to estimate a trend and seasonality model. 

Being stable in an observed period of time, the point is to determine if the same trend maintain for the new 

observations (Verbesselt et al. 2012b). With this purpose in mind and considering that the data can be modelled 

in a linear regression, a structural change detection method was formed. Using moving sum of the residuals of 

the monitoring period t = n+1, …, when the result of the moving sum, depicted in equation 5, deviating from 

zero up to more than a significant level of 95%, bfast monitor identify this pixel as a breakpoint.  

MOt=
1

𝜎√𝑛
∑ (𝑌𝑠

𝑡
𝑠=𝑡−ℎ+1 − 𝑌1𝑠)      (5) 

Where 𝜎 is the variance estimate, 𝑌𝑠 is the actual observation, 𝑌1𝑠 is the expected value, 𝑛 is the number of the 

observations in the historical period and ℎ is the band width of the moving sum defined as a fraction of 𝑛. Bfast 

monitor calculates the magnitude of change, regardless of when a change will be detected. The magnitude of 

change is defined as the subtraction between the value observed and the value expected.  

2.4.3 Reference period. The assumption of the bfast monitor is that the observation in the historical period 

t=1,…, n, are free of change and can be used to model the expected behavior using the equation 2, 3 and 4. A 

illustration of bfast monitor is presented in figure 2. However, it is not always the case. Often they look at all the 

available observation and identify a stable historical period, right before the beginning of the monitoring period.  

Bfast monitor allows identifying a stable historical period manually or automatically. Manual selection is 

recommended when there is expert knowledge (Verbesselt et al., 2012b). In the cases of no, or the time series 



data is large (e.g. satellite images), bfast monitor can identify a stable historical period automatically based on 

the available data. To automatically define the detection period, a accumulating sum is used of the residuals in a 

reversed order (ROC), that it evaluates the error in the prediction using the equation 2 to retreat in time t=n, n-1, 

n-2, … until a disturbance is found.  

 

Figure 2. An illustration of change detection by bfast monitor.  

2.4.4 Bfast spatial. Bfast spatial uses the algorithm of bfast monitor, in a context of satellite images, where 

potentially each pixel corresponds to a time series (Dutrieux, et al., 2016). The result of bfast spatial is a pile of 

data with three layers: 1) detected break points for each pixel, with information of the occurring dates in format 

of decimal year, 2) magnitude of change for each pixel, 3) error, with value of 1 when an error is found in a 

particular pixel or NA data where the algorithm was successful.  

To detect forest cover change, it is considered only the magnitude of those pixels where breakpoints occurred, 

the negative magnitude is associated with deforestation or degradation, and the positive is associated with 

revegetation or reforestation. However, to define the changes, only by the presence or absence of the 

breakpoints is not enough, since it cannot be related directly to changes (Dutrieux et al., 2016, 2015). To avoid 

the false positive detection it is necessary to establish a threshold. This study applies a threshold of 0.05 

following Dutrieux (2016).  

2.5 Comparison of the results with two-times change results 

A transition matrix and transition maps are calculated using land cover maps 2007 and 2014. The first 10 

important transitions judged by the number of pixels are specified in the transition matrix to carry out the 

comparison with the changes detection by time-series NDVI data.  

3. RESULTS 

3.1 Change detection by bfast monitor with mask of forests at 2007 

3.1.1. Forest loss by magnitude and by year of occurrence 



  

Figure 3. Forest loss (2007 – 2014) detected by bfast spatial applying forest mask (2007), by magnitude (left) 

and by year of occurrence (right).  

3.1.2 Forest gain by magnitude and by year of occurrence 

  
Figure 4. Forest gain (2007 – 2014) detected by bfast spatial applying forest mask (2007), presented by 

magnitude (left) and by year of occurrence (right). 

3.2. Change detection without applying forest mask at 2007 (Global change) 

3.2.1. Loss by magnitude and by year of occurrence 

  
Figure 5. Forest loss (2007 – 2014) detected by bfast monitor without applying forest mask of 2007, presented 

by magnitude (left) and by year of occurrence (right) 

3.2.2. Gain by magnitude and by year of occurrence  



  
 

Figure 6. Forest gain detected by bfast spatial without applying forest mask of 2007, by magnitude (left) and by 

year of occurrence (right).  

3.3. Forest cover change from land cover maps of 2007 and 2014 

  
 

Figure 7. forest cover change derived from land cover maps of 2007 and 2014, differentiated by applying forest 

mask (left) and without applying forest mask (right).  

 

 

 

 

 

 

 

 

 

 

 



3.4. Comparison between changes by NDVI time-series and by land cover maps 

For results with/without forest mask 

Categories 2007 Categories 2014 With forest mask Without forest mask 

verific

ation 

Gain/ 

bfast 

Loss/

bfast 

Perce

ntage 

verific

ation 

Gain

/bfas

t 

Loss

/bfas

t 

perce

ntage 

Tropical dry 

forest / 

secondary 

Induced / 

cultivated 

grassland 

488 117 80 40.4

% 

511 120 80 39.1

% 

Tropical dry 

forest / primary 

Induced / 

cultivated 

grassland 

433 96 75 39.5

% 

452 102 77 39.6

% 

Tropical dry 

forest / primary 

Tropical dry 

forest / 

secondary  

279 95 70 59.1

% 

288 101 75 61.1

% 

Pine oak 

forest/primary  

Pine oak forest / 

secondary 

278 82 68 54.0

% 

288 84 72 54.2

% 

Oak forest/herbal 

secondary  

Induced / 

cultivated  

grassland  

277 78 59 49.5

% 

287 78 60 48.1

% 

Pine oak forest 

/secondary  

Perennial crops 269 63 57 44.6

% 

284 66 59 44.0

% 

Oak 

forest/primary  

Oak 

forest/secondary 

248 60 55 46.4

% 

253 60 58 46.6

% 

Irrigated 

agriculture 

Pine forest/ 

secondary 

175 50 49 56.6

% 

175 52 50 58.3

% 

Pine oak forest 

/primary 

Perennial crops 169 46 44 53.3

% 

174 46 48 54.0

% 

Pine oak forest 

/secondary 

Induced / 

cultivated 

grassland 

157 42 43 54.1

% 

164 43 44 53.0

%  

Total 

2708 672 586 46.5

% 

3879 1013 856 48.2

% 

Table 1. Comparison of changes detected by bfast spatial and by land cover maps of 2007 and 2012. In which, 

the first two columns show the land cover categories in 2007 and 2014. The columns 3-6 show the scenario with 

application of forest mask, and columns 7-10 show the scenario without the application of forest mask. The 

column of verification data was derived by transition matrix with land cover maps of 2007 and 2014. The 

percentage is calculated by dividing the number of the change from the verification data with the sum of the 

gain and loss calculated by bfast spatial.  

4. CONCLUSIONS 

With time-series MODIS NDVI data for 2000 – 2014, by applying method of bfast spatial, we obtained results 

for the detection of forest disturbance data represented in forest loss and forest gain spatially and temporally. 

Time-series NDVI analysis can potentially detect vegetation trajectory change, the gain of NDVI value can be 

related to vegetation growth (e.g. reforestation and regrowth) and the loss of NDVI values can be related to 

vegetation decrease (e.g. deforestation, forest degradation). However, it is still a challenge to relate the change 

magnitude to change categories. A comparison of trajectory change results achieved by bfast spatial with 

traditional two-time period change analysis might shed light on relating the change magnitude with change 

categories.  

In this paper, we tested the change detection in two scenarios: with and without the application of forest mask at 

year 2007. The results show that by applying the forest mask, bfast spatial detected less changes. By applying a 

forest mask using the land cover of year 2007, changes in forest cover can be underestimated, since it excluded 

changes such as reforestation and recovery, and especially those changes from non-forest to forest. However 

applying a forest mask is necessary in the cases of permanent cultivation areas (e. g. avocado, mango, and guava 

crops), since by the analysis of time-series NDVI, these areas will probably not present trends or seasonal 

changes, if their residence time exceeds the historical period of the analysis, which can generate noise in the 

estimation of deforestation and forest degradation by non-traditional methods such as time series analysis. 



At last, we would like to state some possible limitations of this analysis; first, the analysis with Bfast spatial is 

based only on the value of time series NDVI data. Many factors could cause the change in NDVI values, such as 

climate factor. Further study is needed to precise this analysis. Second, we are aware that due to the spatial 

resolution of MODIS sensor, forest disturbances smaller than 6.25ha can not be detected, which implies that 

possibly the majority of disturbances (especially with scale smaller than the pixel size of MODIS) were not 

registered by NDVI time series analysis.  
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