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ABSTRACT  

The role of remote sensing in long-term monitoring is essential to support the understanding of land surface dynamics. 
Serial monitoring requires periodical and frequent observations to allow discrimination between short- and long-term 
phenomena. High temporal frequency observations depend upon optical sensors. Moderate Resolution Imaging 
Spectro-Radiometer (MODIS) offers a higher frequency of temporal observation compared to Landsat and a better 
spatial resolution than Advanced Very High Resolution Radiometer (AVHRR), so provides a good source of 
hypertemporal observations. The assessment of spatial, radiometric, and atmospheric conditions is a pre-requisite for 
consistent hypertemporal observation to inform affecting factors in detecting a given change phenomenon. Satellite 
and sensor properties, algorithms for data generation, and climatic factors during image acquisition are known factors 
dictating the quality of images. In tropical areas where persistent cloud cover exists, atmospheric conditions may be 
the most important determinant of quality. Therefore, careful examination of the usability of the data is vital to 
reducing the likelihood of misleading interpretation of temporal change phenomena. Employing the Time Series 
Generator (TiSeG) and GeoDa to assess the distribution of time series data quality for the MODIS land product, this 
article examines the temporal and spatial pattern of invalid pixels generated based on targeted quality of the MODIS 
product for a 15-year period. This experiment was conducted in the Western part of Java, Indonesia, which is the 
most dynamically changing and topographically heterogeneous area in Indonesia. The distribution of invalid pixels 
in MODIS vegetation indices and their scientific data sets (SDS) varied spatially and temporally. Seasonal patterns 
within the annual span were clearly observed, while some noise was successfully detected.  Noise clusters related to 
climatic or instrumental issues were clearly detected by using local association of statistical autocorrelation 
techniques. We also found clear relationships between invalid pixel generation and terrain factors.  
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1. INTRODUCTION 

The detection of change has been explored from bi-temporal to trajectory analysis. Bi-temporal analysis focuses on 
the difference between two images, usually by categorising the spectral value through classification or focusing on 
the spectral differences. The methods have been shown useful for change detection, however their discrete nature and 
temporally limited observations constraint the identification trends for continuous monitoring. Change processes 
between observations may potentially escape observation. The capacity to identify trends by using frequent 
observations clearly differentiates trajectory from bi-temporal change analyses.  The advantages provided by 
trajectory analyses are usually supported by statistical time series analysis techniques. The application of time series 
analysis can  differentiate long-term from short-term variations and apprehend the entire seasonal cycle of vegetation 
phenology (Jönsson and Eklundh, 2002).  
 
Concerns about sources of data and their quality emerge as frequent observations are necessary in time series analysis. 
Optical sensors have been the main data source for analysis since these products have been available for the longest 
(Batista et al., 1997; Townshend and Justice, 2002).  With the availability of freely accessible images from several 
sensors such as AVHRR, MODIS, Satellite Pour l'Observation de la Terre vegetation (SPOT-VGT), and Landsat, the 
exploration of annual and decadal monitoring of regional and global scale areas of the Earth surface has become 
possible (Brink and Eva, 2009; Fensholt et al., 2009).  In order to identify continuous valid changes (Huete et al., 
2010) and to measure the change impacts on terrestrial ecosystems (Brown et al., 2006), consistent and continuous 
observations are required. Nonetheless, disturbances sourced from atmospheric conditions, acquisition, and product 
generation systems (Colditz et al., 2008) have affected the quality of optical images and their derived products. 
Correction or normalization are essential pre-processing steps to generate consistent quality of optical images. Quality 
checks may provide additional benefits to ensure the properties of images prior to their employment and interpretation 
for change analysis. They can do so by differentiating changes from data artefacts (Roy et al., 2002), which in turn 
result in better change interpretation and avoid misleading conclusions.  
 



Despite the importance of assessing data quality, a survey of the relevant literature indicates a paucity of research on 
checking spatio-temporal quality of images for long-term monitoring. Temporal quality of MODIS was usually 
assessed by smoothing data supported by science data sets (SDS) in order to evaluate the usability of MODIS 
products.  There has been little discussion of evaluation of the spatial dependence of potentially erroneous data and 
possible related causes of this dependence.  Hence, this research addresses the aforementioned issues, and particularly 
focuses on the spatial dependence of erroneous data; and it explores the relationship between this parameter and 
possible related factors such as terrain attributes and land cover types.  
 
Vegetation indices, in particular, have been broadly used as a proxy of the physical amount of green vegetation 
fraction (Huete et al., 2010) for the long-term monitoring of land surface dynamics (Huete et al., 2002). The indices 
have been defined as composite measures of vegetative properties such as chlorophyll content, leaf area, and canopy 
cover and structure (Huete et al. 2010).  Vegetation indices may also represent vegetation vigor or the health of 
vegetation (Ji and Peters, 2003; Pena-Barragan et al., 2011). Long-term monitoring of land cover surfaces has used 
these indices particularly to scrutinise the sequential change of vegetation growth (Carrao et al., 2010; Julien et al., 
2011). Various indices, for instance the Normalised Difference Vegetation Index (NDVI), Normalised Difference 
Built-up Index (NDBI), and land surface temperature have been used in multitemporal or continuous monitoring of 
change (Gallo and Tarpley, 1996; Lambin and Ehrlich, 1996; Zha et al., 2003).  As a seamless product systematically 
generated for a global extent (Huete, 2012), NDVI is the most popular product for the task.   
 
In temporal analysis, the value of the indices is supposed to indicate the environmental condition. Therefore the 
reliability of the time series indices should be assessed circumspectly to avoid biased interpretation and conclusions, 
particularly for tropical areas that likely suffer from persistent cloud cover (Ali et al., 2013).  
 
Evaluating the temporal quality of the MODIS product has commonly been performed by using the accompanying 
quality information, which includes vegetation index (VI) quality, pixel reliability, snow and cloud cover, as well as 
the sun and view zenith and relative azimuth angles.  All that information has been published as a science dataset 
(SDS) for MODIS products. The VI quality is a layer informing whether the VI is produced or not produced due to 
severe disturbances like cloud, while pixel reliability provides information about the quality of a pixel. The 
information indicates noise that affect the quality.  The pixel reliability is labelled using numbers, i.e. no data (-1), 
good data (0), marginal data (1), snow/ice (2), or cloudy (3) (Solano et al., 2010). In this research, the quality 
information was used to establish the experiment settings.  
 
A quality target is usually defined during quality assessment for filtering and further data refinement.  For example 
an evaluation of the temporal quality of MODIS data in Africa (Ghana, Cote d’Ivore, and South Africa) was carried 
out by filtering data based on usability information in the SDS for time series smoothing; it was similarly performed 
for datasets of Germany (Colditz et al., 2008; Colditz et al., 2007).  In fact, there are three types of information within 
the SDS, i.e. usability, reliability and general quality of data, each of which can be used to filter data for temporal 
analysis. In this research the assessment of MODIS quality was carried out based on usability information.   
 
 
2. METHOD 

2.1. Study Site 

The research site is situated in Western Java, Indonesia (Figure 1), and is considered to be the most dynamically 
changing area in Java.  A historical study based on pollen and sediment analysis in Banten, Western Java reported 
that anthropogenic factors were the predominant influence on the process of vegetative land cover change in the area 
over the last 135,000 years (van der Kaars and van den Bergh, 2004). Topography varies across the site; with an 
altitudinal span of 0 meter to about 2900 meter above sea level. Precipitation in the southwest of the area during the 
wet season is reasonably high. The wet season usually occurs between October and March with an annual rainfall 
about 3300 mm (average of 15-years of precipitation data, taken from the Gunung Mas meteorological station). 
During the dry seasons (April-September), on the other hand, some areas in the eastern part of the region suffer from 
drought.  In this area, the annual precipitation is approximately 2400 mm (average of 15-years, 2001-2015, taken 
from the Jatiwangi meteorological station). This area is composed of three provinces, i.e. Jakarta, West Java and 
Banten provinces, and it includes cities, paddy fields, agricultural estates and national parks. Paddy fields are mainly 
distributed in the north coastal region while estates are mostly located near the mountainous regions, where 
commodities such as tea, oil palm, and rubber are cultivated. 



 

Figure 1. Research location. The Digital Elevation Model of Western Java is derived from Shuttle Radar 
Topography Mission (SRTM) 1 Arc Second Global. 

 
 2.2. Data Pre-Processing 

We employed MODIS vegetation products (MOD13Q1) Collection 5 spanning from Julian day 1 of 2001 to 353 of 
2015 to generate the experimental database. Collection 5 includes improved detection of clouds based on a new 
quality-based filtering scheme (Solano et al., 2010). All data granules (345) were downloaded from the Land 
Processes Distributed Active, Archive Center (LPDAAC, https://lpdaac.usgs.gov/data_access/data_pool).  
MOD13Q1 consists of 12 scientific data sets (SDS) including vegetation indices, vegetation indices quality, four 
reflectance bands (red, near infrared/NIR, blue, and medium infrared/MIR), view and sun zenith and relative azimuth 
angles, composite day of the year, and pixel reliability (Huete et al. 2010). This particular product was selected to 
obtain the best spatial resolution of MODIS data at 250 m to deal with small parcels of land use/cover and to obtain 
an acceptable composite image in an area that are severely affected by the presence of cloud. Prior to analysis, all the 
MODIS products were reprojected from sinusoidal to geographic using the World Geodetic System (WGS) 1984 
system and cropped to the extent of Western Java (Upper Left latitude -5.80 and longitude 104.90; Lower Right at 
latitude -7.85 and longitude 108.64) by using the MODIS Reprojection Tool (MRT). The cropped images were 
subsequently exploited to assess the quality of time series MODIS data and to describe its usability.  
 
2.3. Assessment of the Temporal Quality of MODIS Indices 

A set of experiments for exploring fifteen years of the MODIS data was conducted based on three targeted qualities, 
i.e. acceptable, pixels without shadow/cloud/snow (SCS), and acceptable quality without SCS. This set was selected 
considering the previous set of assessment for German data (Colditz et al. 2008), which urged the avoidance of overly 
strict settings such as perfect or good quality, and which may have resulted in insufficient data for time series analysis. 
A detailed description is presented in Table 1.  
 

Table 1. Quality settings used in the experiment 
Code Quality/ Explanation 

A Acceptable 
O Without Shadow/Cloud/Snow  
AO Acceptable without Shadow/Cloud/Snow 

 
By using the time series generator (TiSeG), the datasets were processed to identify invalid pixels and maximum gaps 
within a series from the ingested datasets (Colditz et al. 2008).   
 
2.5. Assessment of the Spatial Distribution of Invalid Pixels and Temporal Gaps 
The evaluation of the spatial distribution of MODIS quality aimed to test the significance of spatial autocorrelation 
of invalid pixels and maximum temporal gaps within the 15-year observation period. Spatial autocorrelation has been 
discussed with respect to ecological phenomena captured by remote sensing imagery (Wulder and Boots, 1998). 



Spatial autocorrelation deals with identifying the similarity of properties located nearby. Various statistics have been 
introduced to measure spatial autocorrelation, whilst it is recognised that semi-variance has been primarily employed 
in remote sensing areas (Wulder and Boots 1998). Two other spatial statistics used to measure spatial autocorrelation 
are Moran’s I and the G* statistic. Moran’s-I tests the null hypothesis that spatial autocorrelation among the invalid 
pixel distribution is zero. Any deviation to the hypothesis will result in a rejection of the null hypothesis, meaning 
that data are spatially auto-correlated.  While Moran’s I indicates a global pattern of spatial autocorrelation, the G* 
statistic demonstrates the local variation of spatial patterns (Getis and Ord, 1992).  As recommended by Getis and 
Ord (1992), the G* statistic and Moran’s I should be used to obtain optimal interpretation of spatial properties. Hence, 
this research explored those two analyses to evaluate the spatial distribution of MODIS quality.  
 
In this research, the G* statistic is used to describe the local spatial association of the invalid pixels and maximum 
gaps. The statistics may identify local dependence (Getis and Ord 1992) between the queen’s case distance (d) of 
invalid pixels and maximum gaps. The probability statistic (p-value) was generated to test the significance of spatial 
association indicated by the G* statistic. It describes clustering of high or low frequencies of invalid pixels and 
maximum gaps. The clusters having probability values of less than 0.05 were flagged as statistically significant. The 
label differentiates clusters of high and low values and insignificant clusters for mapping. The spatial distributions of 
invalid pixels and maximum gaps were evaluated based on the 15 years of observations by using GeoDa.  
 
2.4. Assessing Invalid Pixels and NDVI Values over Different Terrain and Land Cover Types 

The distribution of invalid pixels was identified over different terrain morphometric attributes and land cover/use 
types.  The Digital Elevation Model of Shuttle Radar Topography Mission (SRTM) 1 Arc Second Global 
(approximately 30 meters in GeoTiff format) was employed to derive aspect, elevation and slope. The data were 
obtained from the United States Geological Survey. The aspect and slope were estimated using 3rd order polynomial 
based on Haralick (1983) in SAGA. Sampling of locations for different land cover types was guided by high-
resolution images from Google Earth, ground survey, and datasets provided by the Indonesian State Forest 
Corporation, PT Perhutani, and the regional watershed management institution (Badan Pengelolaan Daerah Aliran 
Sungai) of Ciliwung and Cisadane.  The ground survey was conducted between 25 December 2015 and 10 February 
2016.  Four main land cover types were observed, including two vegetative covers (forest, crops), water, and built-
up area. The assessment excluded water use since VI is irrelevant to water (Didan et al., 2015; Solano et al., 2010).  
Crops are temporally heterogeneous in use, and vary in type and stage of planting. Built-up covers were taken 
carefully to exclude industrial areas. The samples were selectively taken at 3x3 pixels at distributed locations for 
those land cover types. Land cover/use types were sampled from ten locations that varied by elevation and aspect.  
Samples were used to assess the relationship between the distribution of invalid pixels and terrain attributes as well 
as land cover types. Finally, the relationship between terrain attributes and the pixel-wise invalid pixels within the 
15-year observation window for each land cover type was evaluated. 
 
 
3. RESULTS AND DISCUSSION 

3.1. General Patterns of Usability and Temporal Distribution of MODIS Land Product Collection 5 for 
Western Java for the 15-years Observation Period 

In general, the three settings indicate that if more criteria are added, then more unusable data (invalid pixels) can be 
found. Figure 2 shows that a greater frequency of invalid pixels was generated by combining targeted quality.  The 
acceptable quality (A) generated more invalid pixels and gaps than no shadow/cloud/snow cover (O).  This means 
that properties other than shadow/cloud/snow cover such as geometric angles cause invalid pixels in the acceptable 
category. The maximum temporal gap provides a different trend from invalid pixels. The combined settings (AO) 
does not generate gaps in a proportional manner with the invalid pixels’ generation at the same settings. 
 
Figure 3 shows the temporal distribution of periods when the invalid pixels most likely to be generated by quality 
category. The proportion of area with invalid pixels fluctuated over the period of 2001-2015 (see the top of Figure 
3).  The percentage indicates the area with invalid pixels at any frequency from 1 to 345.  It suggests that about 60% 
to 80% of the area has usable pixels for analysis depended upon targeted quality. The trend describes that worse 
quality disturbances possibly occurred in 2010, with almost 45% of the area comprised of unusable pixels.  It was 
consistently shown that targeting data without shadow/cloud/snow (O) may generate more usable area while the 
combined quality category (AO) produced the highest percentage of area with invalid pixels.  
 
The next assessment was performed by averaging the percentage area of invalid pixels on the same Julian date over 
fifteen years of observations (bottom of Figure 3).  The result shows that a seasonal trend was clearly indicated.  The 
highest percentage of invalid pixels is likely to be generated between days 1 and 129 (January to beginning of May) 
or between days 257 and 353 (September – December).  These periods of high percentages of invalid pixels are 



coincident with the wet seasons, whereas more invalid pixels were likely to be generated in the wet season due to 
severe cloud cover. It indicated that MODIS data are likely to be more unreliable in the wet season than the dry season 
for Western Java. Moreover, the variance of invalid pixels in the rainy season is also higher than in the dry season. 
 

 
Figure 2.  The average of percentage area with invalid pixels and gaps within the 15 year observation period based 

on three quality settings, i.e. Acceptable quality (A), no shadow, cloud and snow/SCS (O) and combination of 
acceptable and no SCS (AO). 

 

 
Figure 3. The temporal trend of percentage of area with invalid pixels (top) and the seasonal trend generated based 
on three quality settings, i.e. acceptable (A), no shadow/cloud/snow (No SCS/ O), and combination (AO), which 
derived from the yearly average of percentage area with invalid pixels over 15 year observation period (bottom) 

 
 
3.2. The Spatial Distribution of Likely Invalid Pixels of MODIS Vegetation in the 15-years Observation 

Period 
 
Moran’s I statistics showed that a strong positive spatial autocorrelation was generally among invalid pixels and gaps 
(Figure 4).  Moreover, the map of the frequency of invalid pixels and maximum gaps (Figure 5) and their test using 
the G* statistic clearly highlights the spatial distribution of invalid pixels for different quality categories (Figure 6).  



 
Figure 4. Moran’s I of the frequency of invalid pixels and maximum gaps generated from 15-year observation to 
indicate the spatial distribution of those variables in three quality settings, i.e. acceptable, no shadow/cloud/snow, 

and combination 
 
 
Figure 4 exhibits the difference of combining SCS and other single quality settings (AO) to the generation of invalid 
pixels and maximum gaps. The combination of quality settings increased the frequency of invalid pixels. However, 
combining O with another setting does not result in the increasing of estimated maximum gaps. Since acceptable 
settings consider not only shadow/cloud/snow contamination but also sun and view angle geometry, it indicates that 
the effect of sun or view angle geometry appear to be prevalent. The O category presents the lowest proportion of 
invalid pixels and temporal gaps within a series compared to other quality categories. This research found that spatial 
dependence of invalid pixels and maximum gaps notably differs when different settings were applied.  The magnitude 
of Moran’s I indicates that invalid pixels were evidently more clustered while the maximum gaps tend to be less 
strongly clustered.  In contrast, the maximum gap seems to be more unique throughout the settings. The test elevates 
the importance of addressing data quality disturbances and making users more cautious when selecting samples for 
time series extraction. 
 
The spatial distribution of the frequency of invalid pixels and maximum gaps over the study area identifies locations 
with severe data quality disturbances. As presented in Figure 5, the number of invalid pixels at a location generated 
from the 15-years of observation range between 23 and 340 while the maximum gaps range from 3 to 23. It indicates 
that the north coastal region, which includes Jakarta, and high altitude locations nearby Mount Ciremay were severely 
affected by data quality disturbances.  As the capital city and the biggest metropolitan area in Indonesia, the Jakarta 
has been severely polluted by vehicles and industrial areas. Meanwhile, high amounts of invalid data along the 
coastline may be related to the difficulties in handling the interface between water and land.  As asserted by Friedl et 
al. (2010), the algorithm to address artefacts along the coastline has been revised continuously in MODIS data 
generation from collection 1 to collection 5.  The other location having high data quality disturbances at the south 
eastern end of Western Java is the Priangan region, covering some hilly and mountainous areas. There are several 
mountains near the region including Mt Ciremay, which is the highest in Western Java (about 2900 m asl), Mt 
Cikuray, Mt Galunggung, Mt Guntur and a few others. Nearby the location is covered with forests in which 
evaporation may generate clouds and thereby affect the quality of MODIS data.  
 
The spatial distribution of the frequency of invalid pixels and the average proportion of area with gaps from the 15-
year observation period as measured by using the G* statistic is presented in Figure 6.  A significant clusters of high 
gaps was found in the Jakarta Metropolitan area, along the north coastline and in the mountainous regions of Priangan. 
The threshold of 23 refers to the number representing a whole year of invalid pixels observed consecutively.  Some 
pixels along the coastline were found to have consecutive gaps larger than 23, which likely related to cutline of the 
border with the sea. 
 
The G* statistic reveals the spatial dependence of the frequency of invalid pixels and gaps.  The spatial distribution 
of the data quality may guide the identification of locations having more reliable data. It may indicate, for instance, 
the most suitable location for taking reliable samples for classification or change detection. The result may assist in 



selecting good pixels for training and testing areas for classification or image analysis, instead of relying merely on 
visual investigation or ground truth data. This analysis may substitute a probability analysis that was proposed by 
Asner (2001) to evaluate areas severely affected by cloud in the humid tropics.  
 

 
Figure 5. The distribution of invalid pixels and maximum gaps in generated from the 15-year observation period 

based on three data quality categories, i.e. acceptable (A), No shadow/cloud/snow (O) and their combination (AO) 
 

 
Figure 6. The distribution of G* statistic for the frequency of invalid pixels and maximum gaps derived from the 

three quality categories, i.e. acceptable (A), No shadow/cloud/snow (O) and their combination (AO). Darker areas 
indicate statistically significant clusters of high numbers of invalid pixels and large maximum gaps, grey shows 

cluster of low numbers of invalid pixels and maximum gaps, and light areas signify no significant clustering. 
 
3.3. Generated Invalid Pixels over Various Land Cover Types and Terrain Attributes 

Figure 7 shows the difference of percentages of invalid pixels for combinations of land cover types and terrain 
attributes.  Built-up area was distributed at locations with slopes between 0% and 30%, crops were cultivated in areas 
with slopes spanning at 0%-25%, while forest was distributed across slopes ranging between 25% - 250%. The figure 



demonstrates the relationship between slope and elevation with the frequency of unusable pixels from the 15-year 
observation. 

 
Figure 7. Scatterplot and smoothed model (blue line) based on locally weighted regression (loess) to relate the 
frequency of invalid pixels within 15-year MODIS observation period and slope (top) or elevation (bottom) for 

three land cover types generated for three data quality categories, i.e. acceptable (A), no shadow/cloud/snow (O), 
and their combination (OA) 

 
Figure 8. Frequency of invalid pixels over three land cover types (built-up, crops, and forest) and aspect and three 
data quality categories (acceptable, no shadow/cloud/snow, combination) from the 15-year observation period in 

Western Java 
 



It appears that the relationship between the frequency of invalid pixels and terrain attributes may not be linear.  By 
using locally weighted regression (loess) it seems that slope and elevation may negatively relate to the frequency of 
invalid pixels.  This relationship was similar for built-up and crop land covers, but not for forest cover. As aspect was 
defined as “the compass direction of maximum rate of change” (Skidmore, 1989), the relationship between aspect 
and the distribution of invalid pixels differs by the position and orientation of samples to geographic directions. Built-
up areas facing east and north were likely to have more invalid pixels than west and south-facing aspects.  Meanwhile, 
there was a fairly similar relation for crops cultivated at location facing east, west and north having a somewhat higher 
frequency of invalid pixels than crops cultivated facing south.  For built-up areas, the higher frequency of invalid 
pixels was clustered mostly at the north or east aspects, while the likelihood of invalid pixels was greater for west or 
south facing aspects for forest cover.  
 
 
3. CONCLUSION 

Global change studies have highlighted the necessity of long-term monitoring employing remote sensing technology.  
High temporal resolution images such as the MODIS land product have been analysed using time series approaches 
for this purpose in which requiring reliable data to avoid spurious results. The experiment with various data quality 
settings demonstrates that the evaluation of MODIS quality should consider shadow/cloud/snow flags provided as an 
additional layer of MODIS product to represent the usability of the data. Exploring temporal patterns provides 
information on possible change or periodical patterns which may relate to the dynamic phenomena. It appears that 
the peak months of the dry season (June-July) are the best months for image acquisition in this tropical region since 
more reliable data can likely be obtained. Cloud presence in the rainy season increases the number of invalid pixels 
and produces a greater variance. Seasonal assessment of estimated invalid pixels and temporal gaps based indicates 
that the dry season span from April to October may be the best period to collect data for land cover monitoring in 
Western Java.   
 
While previous research paid more attention to time series smoothing, a lack of understanding of spatial variability 
of invalid pixels is evident in the literature. This research demonstrates that investigating the spatial distribution of 
data usability could assist in the identification of reliable locations and period for data selection in the tropical areas. 
The G* statistic highlighted the location severely affected by disturbances indicated by higher frequency of invalid 
pixels and maximum gaps. Mountainous areas and polluted urban areas would potentially be the places covered by 
cloud in the rainy season or affected by severe noise. 
 
Relating morphometric attributes with data usability indicates that erroneous data would potentially be prevalent in 
steeper slope and elevated terrain.  However, built-up land cover located in flat areas suffering from severe pollution 
also generate likely high numbers of invalid pixels. Invalid pixel generation related variably with the aspect over 
different land cover types. The result indicates that cloud effects may not be the only source of noises in the study 
area.  
 
 
4. ACKNOWLEDGEMENT 

This research was supported by The Australia Awards Scholarship and Postgraduate Research Student Support 
(PRSS) to facilitate the conference travel to the first author. We would like to thank our assistants for their help during 
field surveys.   

 
REFERENCES 
Ali, A., de Bie, C.A.J.M. and Skidmore, A.K., 2013. Detecting long-duration cloud contamination in hyper-temporal 

NDVI imagery. International Journal of Applied Earth Observation and Geoinformation, 24, pp. 22-31. 
Batista, G.T., Shimabukuro, Y.E. and Lawrence, W.T., 1997. The long-term monitoring of vegetation cover in the 

Amazonian region of northern Brazil using NOAA-AVHRR data. International Journal of Remote Sensing, 
18(15), pp. 3195-3210. 

Brink, A.B. and Eva, H.D., 2009. Monitoring 25 years of land cover change dynamics in Africa: A sample based 
remote sensing approach. Applied Geography, 29(4), pp. 501-512. 

Brown, M.E., Pinzon, J.E., Didan, K., Morisette, J.T. and Tucker, C.J., 2006. Evaluation of the consistency of long-
term NDVI time series derived from AVHRR,SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ 
sensors. IEEE Transactions on Geoscience and Remote Sensing, 44(7), pp. 1787-1793. 

Carrao, H., Goncalves, P. and Caetano, M., 2010. A Nonlinear Harmonic Model for Fitting Satellite Image Time 
Series: Analysis and Prediction of Land Cover Dynamics. IEEE Transactions on Geoscience and Remote 
Sensing, 48(4), pp. 1919-1930. 



Colditz, R.R., Conrad, C., Wehrmann, T., Schmidt, M. and Dech, S., 2008. TiSeG: A Flexible Software Tool for 
Time-Series Generation of MODIS Data Utilizing the Quality Assessment Science Data Set. IEEE 
Transactions on Geoscience and Remote Sensing, 46(10), pp. 3296-3308. 

Colditz, R.R., Gessner, U., Conrad, C., van Zyl, D., Malherbe, J., Newby, T., Landmann, T., Schmidt, M. and Dech, 
S., 2007. Dynamics of MODIS Time Series for Ecological Applications in Southern Africa, International 
Workshop on the Analysis of Multi-temporal Remote Sensing Images, 2007. MultiTemp 2007 pp. 1-6. 

Didan, K., Munoz, A.B., Solano, R. and Huete, A., 2015. MODIS Vegetation Index User's Guide (MOD13 Series). 
The University of Arizona, pp. 38. 

Fensholt, R., Rasmussen, K., Nielsen, T.T. and Mbow, C., 2009. Evaluation of earth observation based long term 
vegetation trends - Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR 
GIMMS, Terra MODIS and SPOT VGT data. Remote Sensing of Environment, 113(9), pp. 1886-1898. 

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. and Huang, X.M., 2010. MODIS 
Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing 
of Environment, 114(1), pp. 168-182. 

Gallo, K.P. and Tarpley, J.D., 1996. The comparison of vegetation index and surface temperature composites for 
urban heat-island analysis. International Journal of Remote Sensing, 17(15), pp. 3071-3076. 

Getis, A. and Ord, J.K., 1992. The Analysis of Spatial Association by Use of Distance Statistics. Geographical 
Analysis, 24(3), pp. 189-206. 

Haralick, R.M., 1983. Ridges and Valleys on Digital Images. Computer Vision Graphics and Image Processing, 22(1), 
pp. 28-38. 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G., 2002. Overview of the radiometric and 
biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), pp. 
195-213. 

Huete, A., Didan, K., van Leeuwen, W., Miura, T. and Glenn, E., 2010. MODIS vegetation indices, Land remote 
sensing and global environmental change. Springer, pp. 579-602. 

Huete, A.R., 2012. Vegetation Indices, Remote Sensing and Forest Monitoring. Geography Compass, 6(9), pp. 513-
532. 

Ji, L. and Peters, A.J., 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation 
and drought indices. Remote Sensing of Environment, 87(1), pp. 85-98. 

Jönsson, P. and Eklundh, L., 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. 
IEEE Transactions on Geoscience and Remote Sensing, 40(8), pp. 1824-1832. 

Julien, Y., Sobrino, J.A., Mattar, C., Ruescas, A.B., Jiménez-Muñoz, J.C., Sòria, G., Hidalgo, V., Atitar, M., Franch, 
B. and Cuenca, J., 2011. Temporal analysis of normalized difference vegetation index (NDVI) and land 
surface temperature (LST) parameters to detect changes in the Iberian land cover between 1981 and 2001. 
International Journal of Remote Sensing, 32(7), pp. 2057-2068. 

Lambin, E.F. and Ehrlich, D., 1996. The surface temperature-vegetation index space for land cover and land-cover 
change analysis. International Journal of Remote Sensing, 17(3), pp. 463-487. 

Pena-Barragan, J.M., Ngugi, M.K., Plant, R.E. and Six, J., 2011. Object-based crop identification using multiple 
vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 115(6), pp. 1301-
1316. 

Roy, D.P., Borak, J.S., Devadiga, S., Wolfe, R.E., Zheng, M. and Descloitres, J., 2002. The MODIS Land product 
quality assessment approach. Remote Sensing of Environment, 83(1-2), pp. 62-76. 

Skidmore, A.K., 1989. A comparison of techniques for calculating gradient and aspect from a gridded digital 
elevation model. International Journal of Geographical Information Systems, 3(4), pp. 323-334. 

Solano, R., Didan, K., Munoz, A.B. and Huete, A., 2010. MODIS Vegetation Index User's Guide (MOD13 Series). 
The University of Arizona, pp. 38. 

Townshend, J.R.G. and Justice, C.O., 2002. Towards operational monitoring of terrestrial systems by moderate-
resolution remote sensing. Remote Sensing of Environment, 83(1-2), pp. 351-359. 

van der Kaars, S. and van den Bergh, G.D., 2004. Anthropogenic changes in the landscape of west Java(Indonesia) 
during historic times, inferred from a sediment and pollen record from Teluk Banten. Journal of Quaternary 
Science, 19(3), pp. 229-239. 

Wulder, M. and Boots, B., 1998. Local spatial autocorrelation characteristics of remotely sensed imagery assessed 
with the Getis statistic. International Journal of Remote Sensing, 19(11), pp. 2223-2231. 

Zha, Y., Gao, J. and Ni, S., 2003. Use of normalized difference built-up index in automatically mapping urban areas 
from TM imagery. International Journal of Remote Sensing, 24(3), pp. 583-594. 

 


