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ABSTRACT: Ground-based phenology observations using digital cameras are being carried out to understand the 

effects of abnormal weather and climate variability on vegetation. When using commercial digital cameras in 

phenology observations, camera settings such as white balance and the difference of camera models and illumination 

conditions influence the RGB digital numbers of the images. Vegetation indices used in phenology observations that 

are calculated from digital numbers of images, must also be put in issue. In this study, the effectiveness of 4 

vegetation indices calculated from color-corrected visual images for detecting the change of leaves and flowers was 

investigated by comparing under different weather conditions and within the change of season. The influence of 

bi-directional reflectance could be reduced by using images that were taken when the direction of the sun was around 

90° to the direction of the field of view of camera. Also, it is possible to detect the timing of the phenological events 

by using the vegetation indices, but the influence of weather remains as a problem. 

 

1. INTRODUCTION 

 

The timings of leaf appearance, autumn senescence, and flowering are different and shifting year by year. These 

phenomena are occurring because of abnormal weather in short term and climate variability in long term due to global 

warming [Ono et al., 2015].  

The impacts of abnormal weather and climate variability on vegetation cause various problems. Examples for 

these are the difference of timing of events across species such as food chains and pollination [Kudo et al., 2004; Doi 

et al., 2008], the change of leaf appearance and autumn senescence that leads to change of turbulent exchange of water 

and energy [Moore et al., 1996; Sakai et al., 1997, Richardson et al., 2007], and the lengthening of growing season 

that leads to change of primary productivity, photosynthesis, carbon balance, and CO2 concentration [Ide and Oguma, 

2010]. To understand such impacts on vegetation, it is important to observe changes of leaves and flowers, so called 

phenology, day-by-day and continuously. 

Phenology observations are being conducted in many countries and regions [Morris et at., 2013]. Observations 

of plants should be conducted in individual species and plant scale, and should be done every day, because timings of 

changes differ among individual plants and species, and change of color occurs in short term. Therefore, 

ground-based observation would be suitable. Traditional field observations have been conducted for over a century by 

individuals or groups of people. For example, Japan Meteorological Agency (JMA) has been observing for many 

years to know the overall aspect of weather. They observe index trees of more than 10 species at 102 places. Field 

observations can be done in detail, but it is labor intensive, subjective, and can only be done in places where people 

can access [Sonnentag et al., 2012]. 

On the other hand, observations using digital camera can solve these problems. The date of leaf appearance, 

autumn senescence, and flowering is detected by vegetation indices based on digital numbers of visual images derived 

from digital cameras mounted on towers. This observation method can be done objectively and large amounts of data 

can be analyzed quantitatively, and observation networks have also been constructed such as Phenological Eyes 

Network (PEN) [Nagai et al., 2016] and PhenoCam Network [https://phenocam.sr.unh.edu/webcam/]. However, 

some problems remain about observations using digital cameras and analyzing visual images. The previous studies 

point out that effects on the image taken at different weather and sunlight condition [Sonnentag et al., 2012; Zhao et 

al., 2012]. Also, only one index that shows greenness is used, so it is difficult to discriminate the changes of various 

colors for individual trees. There are also few studies that use and compare more than one index. Therefore, the 

vegetation index that should be useful in each kind of plant or its situation seems to be unclear. 

The purpose of this study is to explore the effectiveness of vegetation indices for detecting the timing of change 

of leaves and flowers by visual image analysis. In this paper, we report the progress results of examinations about the 

effects of scene illumination on vegetation indices, and how vegetation indices respond to the changes of colors of 

leaves and flowers. 



2.  METHODOLOGY 

 

2.1 Study site 

 

The site is located at Tokyo University of Agriculture and Technology in Tokyo, Japan (35°39.94'N 

139°28.37'E). The annual mean temperature is 15.0°C with an average annual precipitation of 1529.7 mm. There are 

usually two rainy seasons in June and September. The trees in the site are mostly deciduous broad-leaved trees and 

evergreen broad-leaved trees with exceptions of a few coniferous trees. 

 

2.2 Observation 

 

To observe the color of the leaves and flowers on trees, we used a single-lens reflex camera. The camera was 

installed on the roof of a four-story building with the angle of depression at 30° and the middle of the direction of the 

field of view at 70°. We put a grayscale board, which has about 44% reflectance, in the field of view of camera to 

correct the color and the brightness on images effected by different sunlight conditions. The camera has been taking 

photographs every 10 minutes during daytime from April 6, 2017 to present. The used camera and settings are shown 

in Table 1. Fig. 1 shows the view of our observation system. 

 

 
 

2.3 Image pre-processing 

 

The colors and brightness of the images are often affected by the weather, sunlight, and setting of white balance, 

so we corrected them using the grayscale board as pre-processing. We extracted R, G, and B digital numbers of the 

grayscale board and derived linear functions of RGB for each image. RGB linear functions were then applied to each 

image, and the corrected images were generated. 

 

2.4 Vegetation indices 

 

We used four vegetation indices of 2G_RBi (Richardson et al., 2007), 2rG_rRBi (Ide and Oguma, 2010), VIgreen 

(Gitelson et al., 2002), and ∆NGB (Ono et al., 2015) in this study. The equations and explanations are shown as 

follows. 

 

2G_RBi :  This index shown in eq.1 expresses the greenness of objects and is also called as Excess Green Index. 

2G_RBi  is calculated by  the sum of the difference in green and red and the difference in green and blue channels, so 

that the value of index is shown in digital number. It is widely used in phenological observations. 

 

2𝐺_𝑅𝐵i = (𝐺 − 𝑅) + (𝐺 − 𝐵) (1) 

 

Where: G; digital number of Green channel, R; digital number of Red channel, and B; digital number of Blue channel. 

 

2rG_rRBi : This was modified for 2G_RBi to reduce the effect of sunlight illumination under different weather 

conditions. It uses normalized RGB values instead of “raw” digital numbers (eq.2). 

 

2𝑟𝐺_𝑟𝑅𝐵𝑖 = (𝑟𝐺 − 𝑟𝑅) + (𝑟𝐺 − 𝑟𝐵) 
 

𝑟𝑅 =
𝑅

𝑅+𝐺+𝐵
  ,  𝑟𝐺 =

𝐺

𝑅+𝐺+𝐵
  , 𝑟𝐵 =

𝐵

𝑅+𝐺+𝐵
 

(2) 

 

  
Figure 1. Observation system 

Table 1 Used camera and settings 

Camera model 

Exposure 

Shutter speed 

White balance 

File format 

NIKON D5100 

F/5 

auto 

auto 

JPEG Fine 

 



VIgreen: This index is also normalized by dividing the difference of green and red by the sum of both (eq.3). The index 

value can be shown from -1 to 1. The positive value closer to 1 shows greenness and the negative value closer to -1 

shows redness. The value closer to 0 shows yellow. 

 

𝑉𝐼𝑔𝑟𝑒𝑒𝑛 =
𝐺 − 𝑅

𝐺 + 𝑅
 (3) 

 

∆NGB:  This index was also developed to reduce the effect of solar radiation by using the normalized green and blue 

channels divided by the average of 3 channels, and expresses the greenness of objects. 

 

∆𝑁𝐺𝐵 = −
𝑁𝐺 − 1

𝑁𝐵 − 1
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𝐺

𝐴𝑚𝑅𝐺𝐵
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𝐵

𝐴𝑚𝑅𝐺𝐵
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(4) 

 

According to these equations, it seems that we can use 2G_RBi, 2rG_rRBi, and ∆NGB to describe the greenness of the 

color of leaves, while VIgreen is used to describe autumn senescence. 

 

3.  RESULTS AND DISCUSSION  

 

Since we could not take images from April 9 to April 28 because of system problems, we used images taken 

from April 29 to September 11. As for precipitation in this season, there was not much rain during the rainy season in 

June, but had much rain in August. 

To reduce the effect of bi-directional reflection, here, we only selected 13 images that were taken within 1 hour 

before and after the time when the sun azimuth was 160°, because the center direction of FOV is 70°. These selected 

images were usually taken from around 10:30 to 12:30. The main trees that can be seen in the images are shown in Fig. 

2. There are 8 species shown in Table 2. In this paper, we focus on 4 deciduous trees shown by red line in fig.2, and 

discuss the results of our analysis. These 4 trees generally have the following seasonal changes; 

Z. serrata has green leaves that turn yellow, then red in autumn senescence. 

G. biloba has green leaves that turn yellow in autumn senescence. 

A. x carnea has green leaves that turn yellow, then red in autumn senescence and red flowers in spring, 

B. florida has yellow green leaves that turn red in autumn senescence and white flowers in spring. 

 

 
Figure 2. ROI (region of interest) of the target trees 

 

Table 2. Species of trees in image 

Species  

Zelkova serrata (Thunb.) Makino 

Ginkgo biloba L. 

Eriobotrya japonica (Thunb.) Lindl. 

Mallotus japonicus (Thunb.) Muell. Arg. 

Aesculus x carnea 

Benthamidia florida (L.) Spach 

Pinus densiflora Sieb. et Zucc. 

Ligustrum lucidum 

deciduous broadleaf 

deciduous broadleaf 

evergreen broadleaf 

deciduous broadleaf 

deciduous broadleaf 

deciduous broadleaf 

evergreen conifer 

evergreen broadleaf 



3.1 Effect of weather and sunlight 

 

To investigate the effect of weather and sunlight on values of the vegetation indices, we compared the 

differences of the values of each vegetation index between clear sky, sunny, and cloudy days. We chose dates that 

were not in flowering, leaf appearance, or autumn senescence season, and that were close to each other. We selected 

the dates of July 21 for clear sky, July 27 for cloudy, and July 28 for sunny. 

The differences of the vegetation indices for Z. serrata is shown as an example in Fig. 3 and the average with 

standard deviation of each vegetation index are shown in Fig. 4. The value of 2rG_rRBi slightly increases under clear 

sky. It is pointed that 2G_RBi is influenced by sunlight condition (Ide and Oguma, 2010), so it seems that this was 

because the direction of sunlight became closer to camera direction, which was direct-light condition in photograph. 

However, there was not much difference between the average values under different weather conditions (Fig.4). Most 

of the standard deviation was largest in clear weather. The reason seems that much leaves illuminated by direct 

sunlight and shadows are mixed under clear sky. Overall, there was not much difference of the average values under 

clear sky, sunny, and cloudy conditions, so we decided that it would not be a problem to use the selected 13 images 

per day as the daily averaged data under all weather conditions. 

 

 
Figure 3. The differences of vegetation indices for Z. serrata under clear, partly cloudy, and cloudy conditions 

 

 
Figure 4. The average with standard deviation of vegetation indices under clear, partly cloudy, and cloudy conditions 

● clear (7/21)     

● sunny  (7/28)     

● cloudy (7/27) 

■ clear (7/21)     

■ sunny (7/28)     

■ cloudy (7/27) 



3.2 Characteristics of vegetation indices under leaf appearance and flowering 

 

To investigate how the vegetation indices respond to the changes of leaves and flowers of trees, we investigated 

the temporal patterns of the daily average of each vegetation index during this observational period. There were some 

days in which the camera could not take photographs because of system problems, so we only used days which had at 

least 9 images available. Fig. 5 shows the seasonal fluctuation of 4 vegetation indices for 4 trees. Here, we discuss 

about the characteristics of each tree shown by each vegetation index as follows. 

 

 
 

Figure 5. The seasonal fluctuation of each vegetation index for 4 trees 

 

Z. serrata: There is one peak in all four vegetation indices in the middle of May. When the values of the vegetation 

indices are increasing, the tree is leafing. In the images, the canopy which started as brown, which is the color of the 

branches, becomes green, which is the color of the leaves. When the values of the vegetation indices gradually 

decrease after the peaks, the color of the leaves become darker.  

 

G. biloba: There is an increase or decrease in the values of all four vegetation indices in May and early August, and a 

peak in late July for 2G_RBi and 2rG_rRBi. In May, the values of 2G_RBi and 2rG_rRBi decrease while VIgreen and 

∆NGB increase. In the images, G. biloba already has leaves when the observation starts on April 29, and the color of 

the leaves become darker green in May. The values of VIgreen and ∆NGB responded to the color of the leaves becoming 

less “reddish” and “blueish”, and the values of 2G_RBi and 2rG_rRBi responded to the color of the leaves becoming 

darker. There is a peak in the values of 2G_RBi and 2rG_rRBi in late July and a drop in all four vegetation indices in 

early August, but we could not find the reason for this on the images. It might be because of the long spell of cloudy 

weather. 

 

A. x carnea: There is a rapid decrease and increase in all four vegetation indices in the middle May, a gradual 

decrease after they increase the peak in late May except for ∆NGB which has a peak on July 4, and a period with 

smaller values in early August like the one in G. biloba. A. x carnea starts with leaves on and no flowers, and when the 

values of A. x carnea in all four vegetation indices decrease, the red flowers bloom, and when they increase, the 

flowers drop. After that, the color of the leaves becomes darker, which is when the values of vegetation indices 

decrease. The reason for the peak of ∆NGB could not be found. We could not find the reason for the period with 

smaller values in early August either. 

 

B. florida: There is a peak in the first half of May. After that, the values of 2G_RBi and 2rG_rRBi gradually decrease 

while VIgreen and ∆NGB is decreasing and increasing. There is also a decrease and increase in late August in all four of 

● Z. serrata      

● G. biloba      

● A. x carnea      

● B. florida 

■  no data 



the vegetation indices. B. florida already has white flowers and yellow green leaves at the start of the observation, and 

the flowers drop in the first half of May, which is when the values of vegetation indices are increasing. The difference 

of values between the start and the peak is small in ∆NGB compared to the other vegetation indices because ∆NGB is 

calculated by G and B, and the digital numbers of R and G do not change much. The digital numbers of B change in 

the period, but the digital number of B is small, so it did not affect the value of ∆NGB much. After the middle of May, 

the color of the leaves become darker which was when the values of 2G_RBi and 2rG_rRBi gradually decrease. The 

values of VIgreen and ∆NGB increase and decrease in this period, but we could not find the reason for this. We also 

could not find the reason for the decrease and increase in late August. 

 

We compare the fluctuation of the vegetation indices between trees. When we look at 2G_RBi, B.florida has the 

largest value overall and A. x carnea is the smallest, however, when we look at 2rG_rRBi, its difference is smaller. 

This was because 2G_RBi was directly affected by the lightness of the object, but in contrast, 2rG_rRBi was less 

affected because it used normalized values. As for VIgreen, B. florida has the smallest value overall. This is because the 

color of the leaves of B. florida is the closest to yellow.  

As for the overall of the vegetation indices, the variability of the value of 2rG_rRBi was larger than 2G_RBi. 

This was probably because of weather, so it seems that the value of 2rG_rRBi was more affected by weather than 

2G_RBi in this study. Also, B.florida has the least variability. This is because it has the least shadows. 

 

4.  CONCLUSSION 

 

In this study, we explored the effectiveness of vegetation indices for detecting the timing of leaf appearance and 

flowering of trees by using color-corrected images taken from visual images. We compared 2-hour fluctuation and the 

average with standard deviation of the values of vegetation indices in different weather conditions, and compared the 

seasonal fluctuation of the vegetation indices in 4 trees. As a result, we found out that by only using images taken 

within 1 hour before and after the time when the direction of the sun was 90° from the direction of the view of camera, 

the influence of bi-directional reflection on vegetation indices could be reduced. We also found out that the timing of 

leaf appearance and flowering could be detected by using vegetation indices. 2G_RBi and 2rG_rRBi detected the 

change of greenness and darkness of the color, while VIgreen and ∆NGB detected the change of greenness, and 

especially in flowers, VIgreen was effective. However, the problem that some vegetation indices such as 2G_RBi and 

2rG_rRBi are affected by different weather conditions remains. 
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