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ABSTRACT: Mapping built-up areas is important for city growth monitoring and calibrating models for city growth 
forecasting. Aerial and satellite ortho-imagery is popularly used for this purpose. Knowledge based, semi-automated 
approach for this task is challenging and requires significant human intervention and application of subjective 
expertise for iterative refinement of rule sets used for semantic segmentation. This is due to high heterogeneity in 
shape, density and composition of built‐up areas. Further, methods that rely on calculating tonal and textural indices 
fail to generalize well and require manual tuning of thresholds for different regions for accurate segmentation. This 
paper investigates a fully automated deep learning approach based on a convolutional neural network for this task. 
This eliminates the need of human expertise for defining complex rulesets for semantic segmentation and does not 
require subjective retuning of deterministic thresholds for different regions. Specifically, this paper discusses design, 
training and performance evaluation of a deep convolutional network for identifying built-up land areas in LISS-4 
satellite ortho-imagery. The network was trained and evaluated on multi‐spectral LISS‐4 satellite ortho-imagery 
covering the central core and peripheral developing areas of a city.  
1. INTRODUCTION 
Over the years, SLEUTH model has been extensively used for forecasting urban growth patterns (Chaudhuri and 
Clarke, 2013). Inputs required for calibrating growth forecasting models include historical maps of built-up areas. 
Satellite and aerial ortho-imagery is popularly used for preparing these maps. Manual approach to mapping built-up 
areas using visual interpretation of satellite imagery is costly to scale up when wide geographical regions of extended 
historical time frame are required to be mapped. Extensive research and development has been carried out towards 
automating mapping of built-up areas. A direct approach to identifying built-up areas relies on normalized difference 
built-up index (Zha and Ni, 2003), but the reliability of this method is lowered in mapping peripheral urban areas 
where barren or fallow land with low moisture content is widespread. Another approach that is extensively used is 
application of object based classification using hand-crafted features (Zhang and Wang, 2014). This involves creation 
of rules for defining characteristics of built-up areas or individual built-up structures as they visually appear in the 
images. The characteristics that are commonly used, represent spectral properties, shape and texture. However, due 
to high variability in texture and spectral properties of built-up areas as show in Figure 1, it is difficult to design 
robust rule-sets that generalize well. Therefore, in this paper we investigate a fully automated deep learning approach 
based on convolutional neural network (ConvNet) for mapping built-up areas which can accurately map built-up 
areas even in areas with dry or fallow land. This approach has an additional advantage that it does not require feature 
engineering or manual tuning of deterministic thresholds for building an accurate segmentation model. 
 

 Figure 1 Image Demonstrating Visual Heterogeneity of Built-up Areas 
2. LITERATURE REVIEW 
A variety of ConvNet architectures (Long et al., 2014; Liu et al., 2015; Noh et al., 2015; Badrinarayanan et al., 2015) 
have demonstrated success in image segmentation benchmark datasets (Everingham et al.,2010), (Song et al., 2015), 
(Geiger et al., 2012). The success of ConvNets has also been adapted to over-head sub-meter resolution aerial imagery 



and digital surface models as demonstrated by top performing models in ISPRS Vaihingen and Potsdam 2D semantic 
labelling challenges (Potsdam 2017; Vaihingen, 2017). The top performing ConvNets in these challenges are 
specifically designed trained for identifying footprints of individual objects by using very fine resolution (less than 
1m) ortho-imagery. Footprint level maps can then be used to produce higher level built-up area maps. However, 
historical availability of such imagery is usually very limited and temporally inconsistent. This makes it difficult to 
use these images for generating sets of long-term historical built-up area maps that are suitable for calibrating urban 
growth models. Therefore, this paper discusses a direct segmentation approach using multispectral LISS-4 satellite 
ortho-imagery of 5.8m resolution which has consistent historical availability in Indian region. 
3. ARCHITECTURE 
The architecture of our network is shown in Figure 2. The architecture is based on SegNet encoder-decoder 
architecture (Badrinarayanan et al., 2015) and has no fully connected layers. Each layer group in the encoding part 
comprises two 3x3 2D convolutional layers (Conv) with rectified linear unit (ReLU) activation. Each convolution 
layer in the network is followed by a spatial max pooling (Pooling) layer which consists of pooling units that output 
the maximum value from each of 2x2 cluster of neuron activations at the prior layer. Each layer group of the encoding 
network thus produces feature maps in the form of 3D activation arrays that are fed to the next encoding layer group. 
Progressive down sampling of feature maps by each layer of the encoder network results in context aggregation 
properties with relatively fewer parameters to train when compared to other popular architectures (Long et al., 2014), 
(Liu and Berg, 2015), (Noh and Han, 2015). The layer groups in the decoding part of the network comprise a 
concatenation and a 2x2 up-sampling layer followed by two 3x3 convolution layers. Each layer group in the decoder 
part thus progressively densifies the feature maps by concatenating with the pooling indices from the corresponding 
input layer group to ensure localization of features. The final sigmoid layer performs pixel wise classification. 
 

 Figure 2 Network Architecture 
 
Batch normalization (BN) (Ioffe and Szegedy, 2015) layers were used for accelerating the training of the network 
and improving regularization. The dimensions of the convolution window and feature map depths at different pooling 
levels are given in Table 1. 
 

Table 1 Layer Parameters 
Pooling Level No pooling First  pooling Second pooling Third pooling Fourth Pooling 
Conv. Depth 16 32 64 128 128 
Feature Map Size 1024x1024 512x512 256x256 128x128 64x64 

 
4. DATA 
Training and test data consisted of manually labelled 6144x3072 pixel, 3 band, 5m resolution (resampled from 5.8m 
resolution) LISS-4 image each. Spectral specifications of bands are given in Table 2.  Both images covered non-
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overlapping regions of Surat city and its peripheral area with suburban development. The training images were chosen 
such to cover entire spectrum of built-up densities from dense core of the city to outer peripheral areas with very 
sparse built-up area patches. Anderson’s land use (man-made) and land cover (natural or semi-natural) classification 
system (Anderson et al., 1976) was used for manual labelling of built-up areas. Visually discernible major roads were 
not included in the marked areas. Boundaries of built-up areas were digitized as polygons using Quantum GIS (QGIS) 
software. The polygons were then rasterized using Geospatial Data Abstraction Library (GDAL) to generate a binary 
mask. The resulting raster mask was split into tiles of 1024x1024 pixel images. Similarly, the LISS-4 input image 
was aligned with rasterized mask and similarly split into 1024x1024 pixel images. Three 1024x1024 pixel images 
from the training data were used for cross-validation of hyper-parameters. 
 

Table 2 LISS-4 Spectral Specification 
Band Name Band width (from – to) [μm] 

 
Code Maximal 

resolution [m] 
MX Mode 2 0.52 - 0.59 GREEN 5.8 
MX Mode 1 0.62 - 0.68 RED 5.8 
MX Mode 4 0.77 - 0.86 NIR 5.8 

 
 

 Figure 3 Training Data Samples 
5. EXPERIMENT AND RESULTS 
The training and test LISS-4 images were mean centered by subtracting band-wise mean across all images in the 
training set and dividing by band-wise standard deviation. The network was trained for 100 epochs using Adam 
optimizer (Kingma and Ba, 2014) with learning rate of 0.0001 and without learning rate decay. Weights that resulted 
in best cross-validation performance were used for performing segmentation of test images. The results of the 
experiments are summarized in Table 3. Comparison of trained network output and manually segmented images is 
shown in Figure 4. The trained network was able to accurately exclude extremely dry sandy areas (which are 
spectrally similar to large built-up structures) as shown in Figure 5. Also, as shown in Figure 6, the network also 
demonstrated very good generalization when tested on input images of Jabalpur which were not a part of training, 
cross-validation or test region and significantly differed from the training set in terms of spectral and textural mix 
and distribution.  
 

Table 3 Results 
True 

Positive 
True 

Negative 
False 

Positive 
False  

Negative 
Accuracy Kappa 

40.6% 52.3% 4.7% 2.4% 92.9% 0.856 
 

a. training images 

b. manually mapped built-up areas 



 Figure 4 Segmented Maps of Built-up Areas 
 

 Figure 5 Discrimination of Spectrally Similar Pixels 
 

a. test images 

b. manually mapped built-up areas  

c. network output 

a. input image b. network output 



 

 Figure 6 Generalization Test 
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