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ABSTRACT: Precise calculation of survey networks, such as reduction of directions, azimuths, zenith angles, 

slope distances onto the ellipsoid and geoid modeling processes are topically demanded applications of deflection 

of vertical. Astro-geodetic and gravimetric techniques, incorporated with GPS data and terrestrial data, are complex 

and time consuming methods of determining this value. This study resolved the deflection of the vertical 

components in north-south (𝜉 ) and east-west (𝜂 ) of a fixed point by using GPS and levelling measurements, and 

investigated the effect of distribution geometry of the ancillary stations around the selected station for the calculated 

results. This process was enhanced by considering both spreaded distribution geometry of the stations and skewed 

distribution geometry of the stations. 

 

The deflection of vertical components were calculated for a fixed point in the area of Sabaragamuwa University of 

Sri Lanka, using two test networks for both spreaded and skewed distribution geometries with 6 ancillary stations 

and a test station ranging from 300 to 1200 meters. Geoidal heights and ellipsoidal heights were obtained by using 

levelling and GPS measurements. General least-squares solution applied to mathematical model that relates the 

unknown parameters (𝜉, 𝜂) with GPS and levelling observables. Deflection of vertical components  𝜂 and 𝜉 of the 

test station in the spreaded distribution network were 𝜂  = -2.49086695" ± 4.29708426" and  

𝜉 = -25.08863327"± 3.74482408". While the components of the same station in the skewed distribution network 

were 𝜂 = -10.57460420" ± 6.16231994"and 𝜉 = -23.58654648" ± 1.28286691". 

 

Even though the north-south component was found to be approximately consistent in the two networks, the east-

west component deviated up to some extent. Nevertheless, magnitude of deflection of the vertical (ε) obtained from 

spreaded distribution network (ε = 25.21198004" ± 3.90504970") was not considerably deviated from the value 

obtained from skewed distribution network (ε = 25.84854791" ± 3.00577546"). Finally, the results were compared 

with EGM2008 derived deflection of the vertical components. 

 

1. INTRODUCTION 

 

Due to the complexity of the physical earth surface, it is impossible to approximate the shape of the Earth with any 

reasonably simple mathematical model. Hence the measurements have typically substituted into simpler surfaces 

for easy measurements and calculations. The Geoid is a model of the Earth’s surface that represents the mean 

global sea level.  An ellipsoid is the mathematical reference of the Earth on which the geoid is represented. The 

difference between these two surfaces is called geoid undulation (N). The angular difference between the direction 

of the gravity vector at a point on the geoid and the corresponding ellipsoidal normal through the same point for a 

particular ellipsoid is called deflection of the vertical (θ) (Featherstone, 1999).  

Since the plumb lines are orthogonal to the level surfaces by definition, the deflection of the vertical also gives a 

measure of the gradient of the level surfaces with respect to a particular ellipsoid. A north-south or meridional 

component (𝜉 ) and an east-west or prime vertical component (𝜂 ) are the usually decomposed two mutually 

perpendicular components of the deflection of the vertical. Deflection components are positive if the direction of 

the gravity vector points further south and further west than the corresponding ellipsoidal normal (Vanicek and 

Krakiwsky, 1986). 

Historically, deflection of the vertical is obtained by Astro-Geodetic and gravimetric techniques. These techniques 

are very complex and time-consuming. Also, it is not a typical land surveyor problem until the recent introduction 

of Satellite Positioning Techniques (GNSS) such as GPS in geodesy. Because of global positioning system (GPS) 

and leveling measurements contain information about the ellipsoidal height and orthometric height, respectively, 

they can be used to determine deflection of the vertical components. In the past, several investigations by Soler et 

al. (1989), Vandenberg (1999), Fujii (1990), and Evans et al. (1989) show that the calculation of deflection of 

verticals with the amalgamation of these quantities is possible. For the first time, Soler et al. (1989) Compared 

vertical deflections determined by GPS and spirit leveling with classical Astro geodetic deflections.  
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Deflection of the vertical components of a station located in Hong Kong were estimated from the recent studies by 

Tse and Baki Iz (2006). The agreement of the deflection of the vertical components ξ, and η obtained from the 

experiment were -7”.3 ± 1.”6 and 5”.3 ± 4”.3 respectively. It has been noticed that the north-south component 

approximately consistent, while east-west component differs from some extent. According to the study, the reason 

for that is due to the distribution geometry of the ancillary stations around the selected station. Therefore, aoording 

to the suggestions given by the previous method (Tse and Bâki, 2006), it is worth to calculate the deflection of 

vertical components at the fixed point by considering both spreaded and skewed distribution geometry of the 

stations. This present study tests the method of determining the deflection of the vertical components from GPS and 

leveling measurements considering the distribution geometry. In this method, geoid heights and ellipsoidal heights 

are found by using leveling and GPS measurements respectively. The deflection of vertical components are 

calculated for a fixed point in the area of Sabaragamuwa University of Sri Lanka.  

 

2. DEVELOPMENT OF THE MODEL 

 

 

Figure 1: Relationship between geoid height and deflection of the vertical (Heiskanen and Moritz, 1967) 

 

The fundamental aim of developing a mathematical model is to establish a relationship between the unknown 

parameters (𝜂, 𝜉) and the GPS and leveling observables. Vertical deflection is found by differencing the geoidal 

and ellipsoidal heights. Knowing the height of the ellipsoid and the height of the geoid at the solution station, the 

normals to both surfaces can be found. Their difference is the deflection of the vertical  (𝜀). The relationship 

between geoid height and deflection of the vertical is defined through the following formulae (Heiskanen and 

Moritz, 1967). 

𝑑𝑁 = − 𝜀 . 𝑑𝑠                                                                                                                          (1)                                                                                                                           

 𝜀 = −
𝑑𝑁

𝑑𝑠
                                                                                                                                (2) 

Deflection of the vertical in any geodetic azimuth (𝛼) direction can be calculated as follows, by using north-south 

and east-west components (𝜂, 𝜉). 

𝜀 =  𝜉 𝑐𝑜𝑠𝛼 +  𝜂 𝑠𝑖𝑛𝛼                                                                                                           (3) 

Combining (2) and (3) equations, 

−
𝑑𝑁

𝑑𝑠
=  𝜉 𝑐𝑜𝑠𝛼 +  𝜂 𝑠𝑖𝑛𝛼                                                                                                   (4) 

If replacing the differential elements that appears in the above relationships with their discrete counterparts, 

−
Δ𝑁

Δ𝑠
≈  𝜉 𝑐𝑜𝑠𝛼 +  𝜂 𝑠𝑖𝑛𝛼                                                                                                   (5) 

When considering the geoid-ellipsoid separations (geoid undulations) at two closely spaced locations A and B on 

the surface of the earth, geoid heights can be defined in terms of ellipsoidal (h) and orthometric heights (H) by 

using the following equations:  

𝑁𝐴 = ℎ𝐴 − 𝐻𝐴                                                                                                                          (6) 



 

𝑁𝐵 = ℎ𝐵 − 𝐻𝐵                                                                                                                          (7) 

By subtracting equation (7) from equation (6) gives the geoid height difference (∆𝑁𝐴𝐵) between point A and point 

B as follows: 

∆𝑁𝐴𝐵 = 𝑁𝐴 − 𝑁𝐵 = (ℎ𝐴 − ℎ𝐵) − (𝐻𝐴 − 𝐻𝐵) = ∆ℎ𝐴𝐵 − ∆𝐻𝐴𝐵                                    (8) 

 

Substituting the above expression in equation (5), 

−
∆ℎ𝐴𝐵 − ∆𝐻𝐴𝐵

∆𝑆𝐴𝐵

≈  𝜉 cos 𝛼𝐴𝐵 +  𝜂 sin 𝛼𝐴𝐵                                                                       (9) 

Here, ∆𝐻 refers to values from geometric leveling and ∆h refers to the values obtained from GPS measurements. In 

this case, equation (9) is a two-variable equation (𝜉 𝑎𝑛𝑑 𝜂).  

In this equation, azimuth (𝛼) can be calculated through geodetic coordinates measured in points A and B. In order 

to calculate the deflection of the vertical components for any point A, one requires secondary points, such as B and 

C. Deflection of the vertical components of point A can be calculated using the ellipsoidal and orthometric heights 

of point pairs of (A,B) and (A,C). In addition, it is also possible to calculate the deflection of the vertical 

components by solving the deflection of the vertical components of any point with the help of the values pertaining 

to three or more points distributed around the selected point, and by using a general least-squares solution (Mikhail 

1976). 

It is important to model the errors to decide whether the model is feasible. Some of the levelling errors are 

systematic and can be eliminated; other errors maybe estimated form the least-squares error propagation model. 

It is important, that the above relationships hold if the separations between the master and the ancillary stations are 

very small. Nevertheless, the larger the separation between two stations, the smaller the error of the deflection of 

the vertical computed from the height differences as shown below. 

Considering the left hand side of (9), 

𝜀 ≈ − 
∆ℎ − ∆𝐻

∆𝑠
                                                                                                                     (10) 

Using the variance propagation rule and assuming that orthometric height differences and ellipsoidal height 

differences are not correlated, 

𝜎𝜀
2 =

1

∆𝑠2
(𝜎∆𝐻

2 + 𝜎∆ℎ
2 ) + (

∆ℎ − ∆𝐻

∆𝑠2
)

2

𝜎∆𝑠
2                                                                      (11) 

The second term within parentheses in the above expression is a fourth order term and can be safely omitted. 

Hence, 

𝜎𝜀
2 =

1

∆𝑠2
(𝜎∆𝐻

2 + 𝜎∆ℎ
2 )                                                                                                        (12) 

Following table include the theoretical standard deviation values. 

Aoording to Ceylan (2009), the error in the deflection of the vertical is linearly proportional to the errors of GPS 

and leveling measurements. For closely spaced stations, both measurement techniques can be very accurate because 

the systematic errors cancel out for GPS height differences and do not accumulate for the leveling observations. 

 

3. NETWORK GEOMETRY  

 

Two test networks were developed suitable for both leveling and GPS observations around the Sabaragamuwa 

University, from latitude 6
0
 42

’ 
7.80

’ 
to 6

0
 43

’ 
20

’ 
and from longitude 80

0
 46

’
40

’ 
to 80

0
 47

’ 
38

’
. Each network consists 

of six ancillary stations and the test station. The positions of the ancillary stations in the spreaded distributed 

network were established as the ancillary stations spread around the test station, while most of the ancillary stations 

in the skewed distributed network were established in the north-south direction (Figure 2).  



 

 

Figure 2: Leveling routes between established stations 

Field works were carried out to determined orthometric heights of all ancillary stations in the designed level 

networks. Double run second order differential leveling was run for twenty-four leveling routes between established 

stations in both networks and 48 height difference measurements were obtained. Scheduled leveling routes between 

established stations shown in the Figure 2. The leveling misclosures between double-run level lines were within the 

tolerance level for tertiary leveling ( 8√𝑘  mm where the 𝑘  is the distance between terminals in kilometers). 

Observations were adjusted using the least square adjustment method. Two Leica and Trimble GPS systems  were 

used for the GPS observations in static mode. GPS observations were post processed and adjusted by baseline 

processing using two reference stations (NSG 01 and NSG 03).  

 

4. COMPUTATIONS 

 

Equation 9 includes two components of the deflection of vertical as unknown parameters which can be estimated 

from orthometric and ellipsoidal height differences and adjusted using the general least squares method as below 

(Mikhail, 1976). 

𝑙 = 𝑓(𝑥)                                                                                                                           (13)           

   

And nonlinear conditions in the model can be expressed functionally by,  

𝑓(𝑙) = 0                                                                                                                           (14)                                                                                                                           

This can have a more general case in which several observed quantities and unknown parameters are in the same 

equation. In that case, a mathematical model has the following form since the function is made of c equations, x of 

u unknowns and l of n observations. 

𝑓(𝑙, 𝑥) = 0                                                                                                                      (15)                                                                                                                        

In general, the conditional as well as the constraint equations involved in an adjustment problem can be nonlinear. 

However, least squares treatment is generally performed with linear functions, since it is rather difficult and often 

impractical to seek a least squares solution of nonlinear equations. Consequently, whenever the equations in the 

model are originally nonlinear, Series expansions and Taylor’s series in particular are often used to get linear 

equations.  

𝐴 𝑣 + 𝐵  Δ = 𝑓                                                                                                             (16)                                                                                                                                                                                    

It is assumed that the orthometric and ellipsoidal height observations are uncorrelated. Standard deviations of 

orthometric heights and ellipsoidal heights are used for the derivation of variance-covariance matrix. Then full 

variance-covariance matrix used for the derivation of weight matrix. 



 

Equation (16) is the fundamental form of condition equations for the adjustment of observations and independent 

parameters combined. It represents 𝑐 linear equations in ( 𝑛 +  𝑢 ) unknowns, which are the elements of the two 

vectors  𝒗 (The residual of observations)  and ∆ (Respective corrections for unknown parameters denoted by x). A 

unique least squares solution is obtained by adding the basic criterion of the following equation.  

𝜙 =  𝑣𝑡  𝑊 𝑣           Should be a minimum                                                      (17)  

To enforce this criterion and at the same time have a solution to the equation (16), the method of constrained 

minima of Lagrange multipliers is used. Thus, if  𝑘(𝑐,1)  represents the yet unknown Lagrange multipliers, then 

should seek the minimum of the following function, noting that the quantity between parenthesis is zero when 

equation (16) is satisfied. 

𝜙′ =  𝑣𝑡  𝑊 𝑣 − 2𝑘𝑡(𝐴 𝑣 + 𝐵  Δ − 𝑓)                                                            (18)    

To minimize   𝜙′, its partial derivatives with respect to 𝒗 and to ∆ are equated to zero. Realizing of course that W is 

a symmetric matrix. 

−𝑊(𝑛,𝑛) 𝑣(𝑛,1) + 𝐴𝑡 
(𝑛,𝑐)𝑘(𝑐,1) = 0                                                                  (19)  

𝐵𝑡 
(𝑢,𝑐)  𝑘(𝑐,1) = 0                                                                                            (20)  

In matrix form the total system is, 

[
−𝑊 𝐴𝑡 0

𝐴 0 𝐵
0 𝐵𝑡 0

] [
𝑣
𝑘
Δ

] = [
0
𝑓
0

]                                                                              (21)  

This system of equations has usually been referred to as the total system of normal equations. The matrix of 

coefficients is a square symmetric matrix of order ( 𝑛 +  𝑢 +  𝑐 ), which is always nonsingular (that is, its rank is 

equal to its order), unless the model is improperly constructed. In view of this fact the least squares problem can be 

solved by inverting the system of equation (21). Furthermore, both 𝒗 and ∆ may not be interested in, together but 

only in one of them, and rarely need 𝑘 for its own sake. Henceforth, an alternative scheme may be desirable. 

Fortunately, the system of equation (18) contains many zero sub matrices and a solution by partitioning is relatively 

simple. From equation (19), 

𝑣 = 𝑊−1𝐴𝑡𝑘 = 𝑄𝐴𝑡𝑘                                                                                     (22)  

And substituting in equation (16) gives 

𝐴 𝑄𝐴𝑡𝑘 + 𝐵  Δ =  𝑓                                                                                        (23)     

 By applying the propagation rule,  

[𝐵𝑡 (𝐴𝑄𝐴𝑡)−1 𝐵 ] Δ = [𝐵𝑡 (𝐴𝑄𝐴𝑡)−1 𝑓]                                                         (24)     

Equation (24) represent a set of u equations in u unknown parameters (the elements of ∆) which are termed partially 

reduced normal equations.  

𝑁 = 𝐵𝑡 𝑊𝑒𝐵 = 𝐵𝑡 (𝐴𝑄𝐴𝑡)−1 𝐵                                                                       (25)   

𝑡 = 𝐵𝑡 𝑊𝑒𝑓 =  𝐵𝑡 (𝐴𝑄𝐴𝑡)−1 𝑓                                                                        (26)  

With the above auxiliaries, a more compact form of equation (24) is 

𝑁 Δ = 𝑡                                                                                                            (27)    

The vector ∆ can be obtained from equation (27) by direct inversion such that  

Δ = 𝑁−1𝑡                                                                                                         (28)   

In the derivation above, several inverses were taken. First, 𝑊−1 in equation (22) is all right since W is nonsingular 

because the observations are functionally independent. Finally, 𝑁−1 in equation (28) is also possible because 𝑁 has 



 

a rank and order that are equal ( = 𝑢 ). Having the value of the parameters Δ, the vector 𝑘 can be computed and 

substituted into equation (22) to evaluate the vector of residuals 𝑣. 

 

Table 1: Calculated values for spreaded network 

From To 
Geodetic Orthometric 

height differences 

(m) 

Ellipsoidal 

height 

differences (m) Azimuth (degree) Distaance (m) 

A B 327.83358 1031.293 28.960 29.060 

  C 18.90971 1121.428 21.070 21.239 

  D 93.12071 641.840 -10.330 -10.333 

  E 129.06302 1069.217 -50.285 -50.344 

  F 205.62790 579.876 -42.942 -42.986 

  G 270.91435 385.593 -41.539 -41.486 

 

Table 2: Calculated values for skewed network 

From To 
Geodetic Orthometric 

height differences 

(m) 

Ellipsoidal 

height 

differences (m) Azimuth (degree) Distaance (m) 

A P 355.98314 874.889 40.342 40.428 

  Q 358.41817 1121.421 38.519 38.656 

  R 5.46089 1140.798 33.501 33.650 

  S 171.11164 613.165 -15.261 -15.328 

  T 147.70497 752.247 -36.185 -36.238 

  U 185.74166 1049.018 -24.030 -24.136 

 

Table 1 and 2 show the calculated geodetic azimuth and distances, orthometric height differences and ellipsoidal 

height differences from the solution station to other stations. 

 

5. ESTIMATION OF THE DEFLECTION OF THE VERTICAL COMPONENTS  

5.1. SPREADED DISTRIBUTION NETWORK 

According to the spreaded distribution network, 𝜂 and 𝜉 components of the deflection of vertical at the solution 

station A was found to be - 0° 0' 2.49086695" ± 0° 0' 4.29708426" and - 0° 0' 25.08863327 " ± 0° 0' 3.74482408 " 

respectively. And magnitude of the deflection of vertical was found to be 0° 0' 25.21198004" ± 0° 0' 3.90504970".  

The solution has four degree of freedom due to the six conditioned equations and two unknown parameters. The a 

priori variance is 1. The a posteriori variance is 0.47812142 and that indicates priori standard deviations are too 

small and observations have been adjusted more than predicted. Solution passed the two-tailed Chi-Squared Test at 

the 95% confidence level. Therefore the a priori and a posteriori stochastic models can be considered as valid.  

Residual and standard deviation for the orthometric height difference and ellipsoidal height difference were reached 

to mm level (Figure 3). The following histogram of residuals (Figure 4) suggests that the residuals (and hence the 

error terms) are normally distributed. All residuals have clustered about the midpoint and fit into the bell shaped 

curve. And the normal probability plot of the residuals is approximately linear supporting the condition that the 

error terms are normally distributed. 



 

 

Figure 3: Residual and standard deviation for the Ellipsoidal height difference and Orthometric height difference in 

Spreaded network 

 

 

Figure 4: Normal histogram and normal probability of residuals for the Ellipsoidal height difference and 

Orthometric height difference in Spreaded network 

 

5.2. SKEWED DISTRIBUTION NETWORK 

According to the skewed distribution network, 𝜂 and 𝜉 components of the deflection of vertical at the solution 

station A was found to be - 0° 0' 10.57460420" ± 0° 0' 6.16231994" and - 0° 0' 23.58654648 " ± 0° 0' 1.28286691 " 

respectively. And magnitude of the deflection of vertical was found to be 0° 0' 25.84854791" ± 0° 0' 3.00577546". 

Also the solution has four degree of freedom due to the six conditioned equations and two unknown parameters. 

The a priori variance is 1. The a posteriori variance is 0.13779109 and that indicates priori standard deviations are 

too small and observations have been adjusted more than predicted. Solution passed the two-tailed Chi-Squared 

Test at the 95% confidence level. In this network also residual and standard deviation for the orthometric height 

difference and ellipsoidal height difference were reached to mm level.  

Standardized residuals can be used to identify and remove possible outlier observations. Standardized residual is the 

ratio between observation’s actual fit in the adjustment and estimate of the strength. As well as the redundancy 

numbers for each adjusted orthometric height difference and ellipsoidal height difference observation were 

examined. In this case noise in the residual is small. The redundancy numbers of the adjusted observations are 

closer to 1 than 0. 

 



 

 

Figure 5: Residual and standard deviation for the ellipsoidal height difference and Orthometric height difference in 

skewed network 

The following histogram of residuals suggests that the residuals (and hence the error terms) are normally 

distributed.  

 

 

Figure 6: Normal histogram and normal probability of residuals for the Ellipsoidal height difference and 

orthometric height difference in skewed network 

 

6. COMPARISON OF RESULTS FROM BOTH SPREADED AND SKEWED DISTRIBUTION 

NETWORK 

Table 3: Comparison of the results 

 

According to the results of earlier studies by Tse and Bâki (2006), value of the east-west component was differed to 

some extent when compared with the values produced by other techniques. In the conclusion of their research, they 

explained the reason for that failure as the distribution geometry of the ancillary stations around the selected station. 

Therefore this study was tested the possibility of above statement by calculating the deflection of vertical at a same 

point by using two networks.  

 (North-South)  (East-West)

-15.516" -0.533" -EGM 2008

GPS/Leveling

-23.5865"  ± 1.2829" -10.5746"  ± 6.1623" 25.8485"   ± 3.0058"

Magnitude of the 

deflection of vertical

Spreaded 

Network
-25.0886"  ± 3.7448" -2.4909"  ± 4.2971" 25.2120"   ± 3.9050"

Skewed 

Network

                Method

The Deflection of vertical components



 

When comparing the deflection of vertical components obtained from spreaded distribution network with the values 

produced by the skewed distribution network, the north-south component was found to be approximately consistent 

with a small difference of 1.5021". But when considering the east-west component, it was differed to some extent 

with a considerable difference of 8.0837".  

 

Figure 7: Graphical representation of the deflection of the vertical components results from two networks 

When designing the two networks for field observations, ancillary stations in the skewed distribution network were 

designed as more biased towards the north-south direction. Therefore the effect of positions of the ancillary stations 

in the skewed distribution network is the most proximate reason for this value difference.  

Nevertheless, magnitude of the deflection of vertical (ε) obtained from spreaded distribution network (ε = 

25.21198004" ± 3.90504970") was not considerably differed from the value obtained from skewed distribution 

network (ε = 25.84854791" ± 3.00577546") as the difference was found to be 0.6365". 

Obtained results were compared with the EGM2008 derived values for further confirmation. Although EGM2008 is 

the highest resolution global geopotential model available so far, it is not capable of representing the high-

frequency components of Earth’s gravity field. It represents gravity field quantities with wavelength approximately 

10 arc minute, which equate to spatial resolution of 5 arc minutes. Therefore, it could be satisfied about the results 

which obtained from the GPS, leveling techniques. When comparing the obtained results of east-west component of 

the deflection of vertical in both networks with the EGM2008, EGM2008 values were much closer to the spreaded 

distribution network than the skewed distribution network. Here also east-west component of the deflection of 

vertical in skewed distribution network was more deviated with the other values. Therefore the effect of the 

geometry of the ancillary stations in the skewed distribution network might be one of the reasons for that deviation.  

 

7. CONCLUSION AND RECOMMENDATIONS 

 

GPS measurements and leveling networks were used to calculate the deflection of the vertical components of a 

fixed point in the area of Sabaragamuwa University. The study was carried out by using two distribution networks 

to check the effect of the geometry of the ancillary stations. According to the final results, the magnitude of the 

deflection of the vertical was nearly equal for both spreaded (ε = 25.21198004" ± 3.90504970") and skewed (ε = 

25.84854791" ± 3.00577546") distribution networks. As stated by Bomford (1980), deflection of vertical can reach 

20" in lowlands and up to 70" in rugged terrains. Therefore, obtained results seems reliable.  

 

When comparing the results from the two networks with the EGM2008, there was a large deviation in the results of 

skewed distribution network. Therefore, distribution geometry of the ancillary stations around the selected station 

could be one of the factors affecting the final result. 
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