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ABSTRACT: The purpose of this study is to integrate the remote sensing and hydro-geomorphic information to 

develop a rainfall-triggering landslide susceptibility model and used this model to evaluate the vulnerability at 

multi-scale spatial units in the up-stream of Chuo-shui River Basin, central Taiwan. Logistic regression was used to 

develop the susceptibility model by inputting the explanatory variables, including rainfall intensity, hydrologic 

conditions, topography, geologic characteristics, and the NDVIpre (normalized difference vegetation index of the 

pre-landslide), and the dependent variables from landslide inventory.  

The results show that NDVIpre is the most critical explanatory variable, making the success rates increased from 

73.7% to 84.9%, and the cross-validation of this model based on six typhoon-triggering landslide events present good 

accuracies with 0.815~0.873 of AUC (area under curve) by using ROC (receiver operating characteristic) curve. The 

results also show that moderate rainfall tends to trigger shallow landslides on the hillslopes with poor vegetation 

cover; Intensive rainfall can trigger deep-seated landslides on the hillslopes with well vegetation cover. This suggests 

that developing a landslide susceptibility model for a moderate rainfall event should use NDVIpre derived from 

satellite images as an explanatory variable to improve model performance. 

Moreover, the slope unit, partition the territory into hydrological regions between drainage and divide lines, is 

appropriate to represent the spatial characteristics of landslide disasters. Comparison of standard errors of the hillslope 

aspect of the slope unit generated by using the four methods: watershed-overlapping, channel-extending, unchanneled 

valley-separation, and manual mapping, the channel-extending method has the best performances representing the 

topographic features on hillslopes.   

 

1.MOTIVATION AND OBJECTIVE 

Over the past few decades, global climate change and the increasing human population have deeply affected the 

geo-environment. In Taiwan, intense or prolonged rainfall and earthquakes induce a series of landslides. Compared 

with other natural hazards such as floods, landslides cause considerable damage to human beings and massive 

economic losses (Guzzetti, 2005). According to the High-risk disaster assessment report of the World Bank in 2005 

(Natural Disaster Hotspots- A Global Risk Analysis), Taiwan may be the place on Earth most vulnerable to natural 

hazards, with 73 % of its land and population exposed to three or more hazards. More than 90% of the populations live 

in areas at high relative risk of death from two or more hazards. 

 

Rainfall is the driving force of rainfall-triggered landslide which is an external natural phenomenon combined various 

environmental factors and affected by human activities. The studies of landslide assessment can be divided into two 

approaches (Wu Chun Hung, Tan Soo Khoon, 2004): one approach is based on the theories of physical properties and 

mechanics of landslide to identify the critical conditions and develop the deterministic prediction models. The 

prediction model was verified by the landslide data occurred in the past cases (Anderson & Howes, 1985; Dietrich et 

al, 1993; Xu, 1995; Fang, 2002; Zhou, 2014).  

 

The second approach is using the statistical methods. A statistical prediction model can be constructed by correlating 

the landslide-related factors with landslide properties and assessing the weights of these factors. (Gupta & Joshi, 

1990; Sterlacchini et al, 2011; Schicker & Moon, 2012; Cheng et al., 2013). There are various statistical models to 

assess the role of landslide–causative factors, including the logistic regression model. Several studies have 

demonstrated that the logistic regression model was commonly used for landslide susceptibility mapping and has 

achieved appreciated results. 

The map unit will affect data processing during the preparation of factor layers to be used in susceptibility mapping. 

The slope units are formed by subdividing the study region based on certain hydrological criteria, where possible 

slope boundaries are delineated. Large mass movements can be represented more realistically in slope units because 

they mostly subdivide the region into uniform slope formations (Begueria and Lorente 1999). An appropriate 



mapping unit is required for the development of a landslide susceptibility map and assessing the regional hazard and 

social impact (Turel and Frost, 2011). The main limitation of this mapping unit is the difficulties in manual 

identification of sub-basin boundaries. However, the use of automatic tools developed in geographical information 

systems (GIS) can automate the construction of slope units by the intersection of drainage lines and divides. Recently, 

the slope unit can be delineated automatically based on specific procedures of computation from a Digital Elevation 

Model (DEM). 

 

In this study, the logistic regression model was used to construct a rainfall-triggered landslide susceptibility model, 

and the slope units were used as the assessment units to represent the topographic features. 

 

2.MATERIAL AND METHODS 

The upriver of Yufeng Bridge, Chuo-shui River Basin located in Nantou County, the central region of Taiwan was 

selected as the study area (Figure 1). This basin has an annual precipitation of 1,900~4,400 mm, with 70% of it 

occurring in the wet season. The main lithology in this area is comprised of argillite, slate, phyllite, and sandstone. 

Since 1996, there are several landslides triggered by typhoon-induced rainfall and earthquakes in this area, especially 

for the Chi-chi earthquake in 1999 and the Typhoon Morakot in 2009. 

 
Figure 1 Study area and landslide inventory 

 

2.1. Event-based landslide inventory  

The event-based landslide inventory records the properties of new landslides associated with a specific event. The 

new landslides associated an event can be interpreted by comparing the landslide before and after the event. 

Consequently, the event-based landslide inventory can help to link landslide with its triggering and environmental 

factors and to establish a susceptibility model for predicting landslide triggering in an event. This study collected and 

mapped two sets of event-based landslide inventory. One is the landslides for Typhoon Morakot in 2009 covered the 

whole study area. The other is the multi-temporal landslides from 1996-2014 covered the Shenmu village, a small 

area in the southern part of Chuo-shui River Basin.  

2.1.1. Basin-scaled landslide for Typhoon Morakot 

A set of basin-scaled landslide inventories were provided by the Forestry Bureau of Taiwan government. The 

landslides were mapped from the FORMOSAT-II satellite mosaic images taken in May to June each year and were 

interpreted by a semi-automatic classified procedure. The minimum map unit is 0.1 hectares. We verified that no 

other significant rainfall occurred during the interval between the time the image was collected. Therefore, the new 

landslides triggered by Typhoon Morakot can be produced by comparing the landslide inventory in 2009 and 2010 

(before and after Typhoon Morakot). 

2.1.2. Multi-temporal landslide in Shenmu village 

To mapping the Multi-temporal landslide, cloudless SPOT satellite images after each typhoon event from 

1995—2014 was selected to analyze the vegetation condition and extract the new landslides. Normalized Difference 

Vegetation Index (NDVI) after typhoon events was calculated to examine the relationship between vegetation and 

rainfall intensity. NDVI value ≤ 0.05 was defined as the classification threshold of no-vegetation (Liu, 2008). After 

the candidate landslides were extracted based on NDVI, artificial editing and revising was conducted to remove the 

areas of the channel and human activities, like buildings, farmland, and etc. (Figure 1). 



2.2. Model development and verification 

Logistic regression employs the independent variables to create a mathematical formula that predicts the probability 

that an event occurs on any given parcel of land which is widely adopted in the literature. Based on the previous study 

(Chang et al., 2007), nine independent variables, including elevation, terrain complexity, slope gradient, aspect, 

curvature, topographic wetness index (TWI), geology, maximum 24-h rainfall (rm24), and NDVI before the landslide 

event (NDVIpre) were used. The logistic regression has the following form: 

logit(λ) = a + b1X1 + b2X2 + … + bnXn 

𝑃 =
1

1 + 𝑒−𝜆
 

To verify the accuracy of the model, an area under the receiver operating characteristic (ROC) curves was applied. 

The ROC curve is a useful method of representing the quality of deterministic and probabilistic detection and forecast 

systems (Swets, 1988). Verification by ROC is carried out by first sorting the landslide susceptibility in a descending 

order. The ordered indexes are then divided into 100 classes and set on the y-axis, with accumulated 1% intervals on 

the x-axis. The resulting graph shows a curve that explains how well the model and factors predict the future landslide. 

The accuracies of the prediction models are represented by the area under the curves (AUC). An AUC value can be 

categorized as acceptable (AUC > 0.7), good (AUC > 0.8), or excellent (AUC > 0.9). 

2.3. Generation of slope units  

Three slope-units delineation methods: (1) watershed-overlapping, (2) channel-extending and (3) unchanneled 

valley-separation were compared in this study. At the first step of the three methods, the watershed-units, upslope area 

that contributes flow to a channel or drainage outlet, can be delineated by computing the flow direction and 

determining a threshold of contributing area from a DEM. Then, the following steps of the three methods are 

described separately as below:  

(1)Watershed-overlapping method: the method delineated the inversed watershed-units from an inversed DEM by the 

same procedure. By overlapping the boundaries of normal and inversed watershed-units in GIS, the ridge and channel 

lines can divide the terrain surface into the slope unit. 

(2)Channel-extending method: the method delineated the longest flow path extending to drainage divides determined 

from a DEM within a watershed-unit. The longest flow line was used to divide a watershed-unit into the left and right 

side of slope unit. 

(3)Unchanneled valley-separation: The method segmented a watershed-unit into unchanneled valley areas based on 

the contributing area flowing into the upstream of a channel line. The residual watershed-unit was, then, divided into 

the left and right side of the slope unit by the channel line. 

The Standard Error of the Mean Aspect (SEMA) was calculated to determine the homogeneous degree of hillslope 

aspect within a slope unit. The SEMA is formulated as the following form: 

𝑒𝑗 =
∑ |𝐴𝑚𝑒𝑎𝑛 − 𝐴𝑖|

𝑛
𝑖=0

𝑛
；𝑆𝐸𝑀𝐴 =  

∑ 𝑒𝑗
𝑁
𝑗=0

𝑁
 

 

3. RESULTS 

3.1. Landslide Susceptibility Model  

The independent variables determined by forward stepwise logistic regression are as follows: 

𝑃 =
1

1 + 𝑒−𝜆
 

𝜆 = −0.107 ∗ 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 − 0.050 ∗ 𝑑𝑒𝑚𝑟𝑢𝑔 + 0.047 ∗ 𝑠𝑙𝑜𝑝𝑒 + 1.072 ∗ 𝑎𝑠𝑝𝑠𝑖𝑛 − 1.252 ∗ 𝑎𝑠𝑝𝑐𝑜𝑠 + 0.056 ∗ 𝑡𝑤𝑖

− 6.897 ∗ 𝑁𝐷𝑉𝐼 + 0.00233 ∗ 𝑅𝑀24 + 𝑔𝑒𝑜𝑙𝑜𝑔𝑦 − 2.328 

 

Table 1 Logistic regression coefficients and the significance level of independent variables 

Independent variable Abbreviation Coefficient (B) Wald Sig. 

geology geology   894.57 0.000 

elevation elevation -0.107 5.79 0.016 

terrain complexity dem_rug -0.050 21.27 0.000 

Slope gradient slope 0.047 102.46 0.000 

Sin of apect sinapect 1.072 1077.11 0.000 

Cos of apect cosapect -1.252 1410.12 0.000 

topographic wetness index twi 0.056 19.27 0.000 

NDVI before landslide event ndvi -6.897 3935.88 0.000 

Maximum 24-h rainfall rm24 2.33x10-3 327.37 0.000 

Constant Constant -2.328 217.30 0.000 



The classification results were obtained by logistic regression analysis with nine significant independent variables 

(shown in table2). The overall accuracy of the classification is 73.7% without NDVI before the landslide (NDVIpre). 

The overall accuracy can be increased to 84.9%, which is quite appreciated if the NDVIpre was added into the model. 

It means that the NDVI value before landslide was a critical factor to the Landslide Susceptibility Model. 

 

Table 2 Performances of logistic regression models without- and with NDVIpre 

Without NDVIpre With NDVIpre 

Observation 

prediction 

Observation 

prediction 

Non- 

landslide 
Landslide 

Accuracy 

(%) 

Non- 

landslide 

landslide Accuracy 

(%) 

Non- 

landslide 
7143 2857 71.4 

Non- 

landslide 
8456 1544 84.6 

Landslide 2396 7604 76 Landslide 1471 8529 85.3 

Overall 

Accuracy (%) 
  73.7 

Overall 

Accuracy (%) 
  84.9 

 

3.2. Model verification  

Verification samples were selected from six typhoon- rainfall events from 2006 to 2012 (Morakot typhoon in 2009 

was excluded as an extreme event). A set of 1,000 pixels was randomly selected from each event to check the 

prediction accuracy and the model performance was evaluated by using the AUC (shown in Table 3). The verification 

represents good accuracy with AUC values of 0.815 ~ 0.873. 

  

Table 3 Model verification by AUC from 2006 to 2012 

year 2006 2007 2008 2010 2011 2012 

AUC 0.815  0.872  0.873  0.844  0.847  0.862  

 

   

   

Figure 3. Landslide susceptibility map in 2006 to 2012. 



3.3. The relationship among NDVIpre, rainfall and landslide area 

Since the NDVIpre is a critical factor of the landslide susceptibility model, the result may reveal that the root cohesion 

increases the resistance force that stabilizes hillslopes (Chang and Chiang, 2009). However, the effect of root 

cohesion is valid for the shallow and soil landslide, but deep and bedrock landslide. Moreover, deep landslide may be 

triggered by prolonged and intensive rainfall and shallow landslide by short duration and moderate rainfall. To reveal 

this issue, the relationship among NDVIpre, rainfall and landslide area was drawn in Figure 4 and Figure 5.  

 

 
Figure 4. Relation between maximum 24-h rainfall and NDVIpre-landslide 

 
Figure 5. Relationship among NDVIpre, rainfall and landslide area 

 

According to the volume-area scaling relationship (Chen et al., 2013), when the landslide area is larger than 10,000 

square meters, the average depth is greater than 2.4 meters. Thus, the landslide area can be considered as the criteria 

for distinguishing the deep-seated and shallow landslide. About 13% was being classified as deep-seated landslide 

and shallow landslide was the absolute majority in this study area. The larger landslide area or heavier rainfall 

presented, the greater the value of NDVIpre was observed. It means that the deep-seated landslide may occur in forest 

land. Although it is well known that vegetation can play a major role in slope stability through hydrological and 

mechanical processes, this study showed that the benefit of vegetation may limit to the shallow landslide. 

 

3.4. Slope unit 

The results showed that the slope unit generated by using channel-extending method have smallest SEMA among the 

slope unit delineation methods, followed by unchanneled valley-separation method, and watershed-overlapping is the 



worst (Figure 6). Since channel-extending delineated the longest flow path extending to drainage divides determined 

from a watershed and sub-watershed unit, it’s much consistent with the natural terrain feature and has the best 

performances (Figure 7). 

 

 
Figure 6. The standard error of the mean aspect of the slope unit generated by using different procedures 

 

Figure 7. Slope unit generated by using different procedures 

 

4. CONCLUSIONS 

The Landslide Susceptibility Model was developed by logistic regression and employed nine independent variables, 

including elevation, terrain complexity, slope gradient, aspect, curvature, topographic wetness index, geology, 

maximum 24-h rainfall, and NDVI before landslide event. NDVIpre is the most critical variable which making the 

prediction success rates increased from 73.7% to 84.9%. This model also verified by six typhoon- triggering landslide 

events and present good accuracies with 0.815~0.873 of AUC by using ROC. The validation result strongly supports 

the Landslide Susceptibility Model. The results also show that moderate rainfall tends to trigger shallow landslides on 

the hillslopes with poor vegetation cover; Intensive rainfall can trigger deep-seated landslides on the hillslopes with 

well vegetation cover. This suggests that developing a landslide susceptibility model for a moderate rainfall event 

should use NDVIpre derived from satellite images as an explanatory variable to improve model performance. 

 

Moreover, the slope unit which can represent the topographic features on hillslopes is appropriate to display the 

spatial characteristics of landslide disasters. The slope unit generated by using channel-extending method is the best 

delineation approach with smallest SEMA, followed by unchanneled valley-separation method, and 

watershed-overlapping is the worst. Therefore, the slope unit should be integrated with the landslide susceptibility 

model to improve the connection between disasters description and vulnerability assessment in the future. 
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