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ABSTRACT: Enhanced information extraction from hyperspectral imagery is usually achieved by applying the 
individual spectral matching approaches like Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM) 
and Jeffries-Matusita distance (JM) independently. However, there is a tendency to overestimate the strength of 
match by SCM, leading to false predictions. A hybrid algorithm is presented by combining stochastic measure 
(Jeffries-Matusita distance) and Spectral Correlation Mapper, which suppresses such an overestimation. The 

proposed algorithm is used to map the mangroves ecosystem in the Pichavaram and Muthupet ecosystems of southern 
India, where the complexity of the ecosystems poses a challenge to species level mapping.  
The algorithm is used to match the unknown target (in EO-1 Hyperion image) with the reference spectra of the 
spectral library, compiled from the image. Reference spectra for Pichavaram are of Avicennia, Rhizopora, paddy, 
groundnut, mudflat, sand, clear water and shallow water. For Muthupet, they are for Avicennia, Prosopis, plantation, 
marsh, mudflat, sand, clear water and shallow water. The matching algorithm and supervised approach are used to 

classify the image. The performance of JM-SCM is compared with JM-SAM, JM, SCM and SAM using the Relative 
Spectral Discriminatory Probability (RSDPB) and Relative Spectral Discriminatory Entropy (RSDE) measures. It is 
inferred that the JM-SCM algorithm results in higher accuracy compared to its individual components. False alarms 
were seen for SCM since it overestimated the area of groundnut in Pichavaram and Prosopis in Muthupet. The 
JM-SCM suppressed these alarms, leading to improved results. Compared to JM-SAM, JM-SCM discriminated clear 
and shallow waters better. SMI (Spectral Matching Index), a parameter that indicates the relationship between false 

alarms and detection rate, and hence the performance of JM-SCM measures, is introduced by the authors.  
SCM identifies the linear relationship and detects the spectral shape between the two vectors, while JM computes the 
band-wise spectral information between the two vectors. The superiority of JM-SCM and accurate mapping of 
mangroves is attributed to the simultaneous utilization of spectral and spatial information. 

 

1.  INTRODUCTION  
 

1.1 Spectral Matching Measures 

 

The effectiveness of information extraction from remote sensing images is dependent on the quality of the data and 

the process involved in analyzing the data. The advent of various hyperspectral missions has facilitated the 

characterization of terrain and planetary surfaces in a precise manner. The contiguous bands of hyperspectral data 

with high spectral resolution accurately identifies materials based on their spectral features (Goetz et al ., 1985).  

Compared to the spatial based classification techniques, spectral based approaches are effective in analyzing the 

hyperspectral data (Chang, 2003). The primary component in spectral based approaches is the spectral signature or 

spectrum which depicts the variations of reflectance of the surface materials, which is used in spectral matching. 

Unlike multispectral data, the spectrum generated from each pixel in a hyperspectral data characterizes the material 

based on its unique diagnostic features.  Due to the relevance of such signatures and to facilitate spectral matching, 

several centralized spectral libraries or spectral databases with reference spectra of known materials are created. 

These libraries comprise of various spectra obtained from ground based spectral measurements and from 

hyperspectral images.  

Spectral Matching involves the labeling of an unknown ‘target’ spectrum based on its closeness with the known 

‘reference’ spectra.  Based on the parameters considered for matching, these approaches are classified as (i) 

deterministic and (ii) stochastic. The deterministic algorithms Euclidean Distance Measure (ED), Spectral Angle 

Mapper (SAM), Spectral Correlation Measure (SCM), Binary Encoding (BE), and Spectral Feature Fitting (SFF) 

consider the geometrical and physical aspects of the target and reference spectra Stochastic algorithms Spectral 

Information Divergence (SID) and Constrained Energy Minimization (CEM consider the distributions of the spectral 



reflectance of target (Vishnu et al., 2013; Shanmugam and SrinvasaPerumal, 2014).   To overcome the limitations of 

individual approaches and to integrate their advantages, combined or hybrid approaches are developed. Such 

approaches outperform the individual components, viz. Spectral Information Divergence-Spectral Angle Mapper 

measure (SID-SAM) (Du et al., 2004), Spectral Information Divergence-Spectral Correlation Angle (SID-SCA) 

(Naresh Kumar et al., 2011) and Jeffries-Matusita distance as JM-SAM (Padma and Sanjeevi, 2014). In continuation 

of such developments, this study proposes a hybrid matching approach involving Jeffries-Matusita distance (JM) and 

Spectral Correlation Mapper (SCM) for efficient  information extraction from hyperspectral images.  
 

1.2 Spectral Angle Mapper (SAM) 

 

Spectral Angle Mapper (SAM) is a deterministic approach which measures the spectral angle (θ) between the target 

spectrum (t) and the reference spectra (r) along a wavelength λ (Kruse et al., 1993). The smaller angle indicates higher 
spectral similarity. The spectral angle        given by Equation (1) varies from 0 to 1.57 radians.  
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The advantages of the SAM approach are its tolerance to extent and illumination of the pixel. Being a 
computationally simple and fast measure, SAM is commonly used for varied applications. SAM is the basis of angle 
based spectral matching approaches which was later improvised in several forms as Modified Spectral Angle Mapper 

(MSAM) (Staenz et al., 1999), Spectral Correlation Angle (SCA) and Spectral Gradient Angle (SGA) (Robila and 
Gershman, 2005), Optimized Spectral Angle Mapper (OSAM) (Bertels et al., 2005) and Enhanced Spectral Angle 
Mapper (ESAM) (Li et al., 2014). 
 

1.3 Jeffries-Matusita Distance (JM) 

 
Jeffries Matusita distance (JM) is a stochastic approach which measures the separability of the target and reference 

spectral vectors. The probability density of the target and reference spectral vectors, t and r for bands (l=1,2…L)  is pl 

and ql and the JM distance is :                                        

                                                                                                      
  

                                                                         (2)     

 

For labeling a target spectrum, the concept of separability and matching are considered to be similar. The least 

distance measure between the classes assessed during separability is similar to the least probabilistic or geometrical 

measure between the reference and target spectra during spectral matching (Padma and Sanjeevi, 2014).  

 

1.4 Combined Jeffries-Matusita-Spectral Angle Mapper Measures (JM-SAM) 

 

The Jeffries-Matusita-Spectral Angle Mapper (JM-SAM) algorithm was developed by combining the deterministic 
Spectral Angle Mapper (SAM) and the stochastic Jeffries-Matusita Measure (JM) using the tangent and sine 
functions (Padma and Sanjeevi, 2014). The tangent and sine trigonometric functions are used to calculate the 
perpendicular distance between the target and reference (t and r) respectively as follows: 
 

        JM-SAM(TAN) = JM(t, r) x tan(SAM(t, r))                                                                                  (3) 
                           JM-SAM(SIN)   = JM(t, r) x sin(SAM(t, r))                                                                                 (4) 

 

JM-SAM algorithm performs better than the individual JM and SAM approaches due to the simultaneous utilization 

of both geometrical and probabilistic aspects between the target and reference spectra. Further, the role of JM in using 

the band-wise spectral information yields improved results. 

 

1.5 Improvised Spectral Angle Measure – Spectral Correlation Mapper (SCM) 

 

One of the major limitations of SAM is its inability to distinguish between negative and positive correlations, since it 

considers only absolute values (De Carvalho and Meneses, 2000; Robila and Gershman, 2005 and Naresh Kumar et 

al., 2011).  When a spectrum is modeled as a vector, there is a need to consider both the magnitude and direct ion 

parameters (Granahan, 2001; Homayouni and Roux, 2004). While direction corresponds to the shape which details 

each diagnostic feature present in the spectrum, magnitude corresponds to brightness of the pixel which yielded the 

spectrum. SAM utilizes only the direction to compute the spectral angle, and not the entire length of the spectral 

vector. Hence, SAM tends to be insensitive to unknown and variable illumination (Kruse et al., 1997). This may lead 



to incorrect matching of a poorly illuminated target pixel.  These limitations were overcome by one of the modified 

versions of Spectral Angle Mapper (SAM), namely Spectral Correlation Mapper (SCM) (De Carvalho and Meneses, 

2000), which quantified the matching between the spectral vectors based on the parameter called ‘correlation’. 

Correlation is a bivariate analysis that measures the strengths of association between two variables. This statistical 

parameter behaves in a physical space to capture the spectral shape between two vectors by following the entire 

length of the vector. One of its type’s, namely Pearsonian correlation coefficient is sensitive to the linear relationship 

between two variables. SCM which is a derivative of Pearsonian correlation coefficient (R), normalizes and centres 

the coefficient measure on the average of the target (t) and reference spectra (r) as in Equation 5: 

  

                                                                                   
                

                   
                                                                          (5) 

 

                                                                               SCM =                                                                                                     (6) 

 

R varies from -1 to + 1, based on negative and positive correlation. However, to compare these values with SAM, the 

SCM measures are presented in radians (Equation 6) which varies from 0 to 1.57 radians. 
 

2.  DEVELOPMENT AND IMPLEMENTATION OF THE PROPOSED ALGORITHM 

 

2.1 Jeffries-Matusita-Spectral Correlation Mapper Measure (JM-SCM) 
 

The proposed Jeffries-Matusita - Spectral Correlation Mapper algorithm involves the incorporation of Spectral 

Correlation Mapper with Jeffries-Matusita Distance measure using tangent and sine measures as follows: 

 

JM-SCM(TAN) = JM(t, r) x tan(SCM(t, r))                                                                                  (7) 

                           JM-SCM(SIN)   = JM(t,r) x sin(SCM(t,r))                                                                                 (8) 

 

The tangent and sine trigonometric functions are used to calculate the perpendicular distance between the target and 

reference (t and r) respectively, instead of the cosine function which projects one spectrum along the other (Du et al., 

2004 and Naresh Kumar et al., 2011).   

Hence, both SCM and JM measures, though being stochastic in nature, behave deterministically as an angle and 

distance measure. Both these measures tend to utilize the entire length of the spectral vector in computing the 

correlation angle and self-information component. The best match in JM-SCM algorithm is characterized by the 

least-separable distance and least correlation angle between the spectral vectors at each band.  
The implementation of the combined spectral matching algorithm was done in the MATLAB environment.  

 

2.2 JM-SCM algorithm to map mangroves 
 

The proposed JM-SCM matching algorithm is implemented to map the mangrove species and their associations in the 
Pichavaram and Muthupet mangrove ecosystems of southern India, where species level mapping is a challenge posed 

by the complexity of the ecosystem.  The proposed algorithm is used to match the spectrum of an unknown target in 
the EO-1 Hyperion image, with the reference spectra of the spectral library, compiled from the known pixels in the 
image. The reference spectra for the Pichavaram region pertains to Avicennia, Rhizopora, paddy, groundnut, mudflat, 
sand, clear water and turbid water, while for Muthupet, it pertains to Avicennia, Prosopis, plantation, marsh, mudflat, 
sand, clear water and turbid water. Initially, a pixel level matching is carried out amongst the members of the 
compiled spectral library to assess the discriminability and matching ability of algorithm. This analysis was further 

extended into a supervised classification framework, where several target pixels from the image were matched with 
the reference spectra present in the library.  
 

2.3 Performance Measures 

 

The performances of the proposed JM-SCM algorithms are compared with JM-SAM, JM, SCM and SAM approaches 
based on: (i) relative spectral discriminatory probability (RSDPB), (ii) relative spectral discriminatory entropy 
(RSDE) and (iii) classification accuracy assessment.  
 

2.3.1 Relative Spectral Discriminatory Probability (RSDPB): The relative spectral discriminatory probability 
(RSDPB) (Chang 2003; Du et al., 2004; Dudeni et al., 2009), is the measure of likelihood of identifying the target 

signature ‘t’ from a set of spectral signatures or spectral library, ∆. For a spectral library ∆, comprising of ‘K’ 
signatures (r1, r2,….rk), the RSDPB measure (Chang, 2003) is given as: 
     



                                                                   
 (k) = 

       

        
 
   

                                                             (9) 

 

where,          
 
    is the normalization constant determined by the spectral matching measures in identifying target 

‘t’ from the set of reference spectra or spectral library ‘∆’.          is the spectral matching measure between the 

target spectra relative to the reference spectra Sk in the library ∆. From the resulting RSDPB vector, [    
 (r1), 

     
 (r2),…..     

 (rk)]
T
, the reference unit with a least relative probability is assumed as the best match for the target. 

The measure of likelihood of the matching algorithms in discriminating the spectral classes is presented as RSDPB 
plots. From these plots shown in Figure (2) and (5), it can be observed that the RSDPB value is lower while 
discriminating similar classes and higher while discriminating dissimilar classes.  

 
2.3.2 Relative Spectral Discriminatory Entropy (RSDE): Using the RSDPB vector [    

 (r1),      
 (r2),…..     

 (rk)]
T
, 

the RSDE (Chang, 2003, Du et al., 2004 and Dudeni et al., 2009) measures the uncertainty in matching the target 
spectra (t) with the reference spectra in the spectral library (∆).  The RSDE measure  is given as: 

                                                                                    
 (t, ∆) = -      

             
     

 
                                                 (10) 

It may be noted that, larger the value of       
 (t, ∆), smaller is the chance of identifying a target ‘t’ from a set of 

reference spectra in the library  ∆. The measure of entropy of the matching algorithms in discriminating the spectral 
classes is presented as RSDE plots. From these plots shown in Figure (3) and (6), the range of uncertainty of the 
matching algorithms in assessing the correct match can be observed. 
 
2.3.3. Accuracy Assessment: To estimate the percentage of correctly classified or matched pixels, post-classification 

accuracy assessment is carried out. Here, around 80 ground truth pixels identified from respective landcover samples 
are selected in the classified image through a stratified random process for accuracy estimation using the ERDAS 
Imagine package and validated using Google Earth (Geo-Eye-I) image. 
 

2.4 Development of spectral matching index 

False alarms or false hits represent the overestimation in the distribution of a target in the classification. The 

confusion matrix obtained from the accuracy assessment presented the correct and incorrect predictions made by the 

spectral matching algorithms (as classifiers). The sensitivity of the algorithm represents the proportion of the targets 

correctly predicted and is termed as ‘true positive rate’ or probability of detection (Pd). The specificity of the 

algorithm represents the proportion of the non-targets correctly predicted and is termed as ‘true negative rate’. Both 

these parameters indicate the level of uncertainty in the classification. ‘100-specificity’ quantifies the false positive 

rate which is known as probability of false alarm (Pf). High sensitivity is usually associated with poor specificity, 

which results in the overestimation of target pixels leading to false hits (Alatorre et al., 2011). The variation of 

sensitivity (Pd) and 100-specificity (Pf) for each matching algorithm are presented in Table (1) and (2). 

To analyze the relationship between probability of detection and probability of false alarms with the spectral 

matching results; a new index called ‘Spectral Matching Index’ (SMI) is introduced (Equation 11).  

 

                                                                                   SMI = 
  

  
                                                                  (11) 

This index computes the ratio of probability of false alarms to the probability of detection. SMI ranges from 0 to ∞. 

The goodness of the proposed matching algorithm is high near 0. SMI values for the matching algorithm in 

identifying the spectral classes are presented in Table (1) and (2) from which the matching algorithm with optimal 

range of SMI, required for low false alarm and higher detection, can be identified. 

 

3.  RESULTS AND DISCUSSION 

 

3.1 Study Site I – Pichavaram Mangrove Ecosystem, Southern India 

 

The results of the classification based on the spectral matching approaches for SCM, JM-SCM(TAN), JM-SCM(SIN), 

SAM, JM, JM-SAM(TAN) and JM-SAM(SIN) are shown in Figure (1).  The spectral matching values amongst the 

reference classes (Avicennia, Rhizopora, paddy, groundnut, mudflat, sand, clear water and turbid water follows the 

order: JM-SCM(TAN)<JM-SCM(SIN)<JM-SCM(TAN)<JM-SCM(SIN)<JM<SCM<SAM. The least matching 

value indicates higher discrimination between the target and reference spectra. 
The better performance of the JM-SCM algorithms can be observed from the RSDPB plots as shown in the Figure (2). 
While discriminating spectrally similar classes such as Avicennia and Rhizopora, the likelihood parameter for 
JM-SCM(TAN) and JM-SCM(SIN) is 0.0048 and 0.0104 compared to 0.0102, 0.0111, 0.038, 0.0463, 0.0493 



respectively for JM-SAM(TAN), JM-SAM(SIN), SCM, SAM and JM.  For dissimilar classes such as Avicennia and 
Rhizopora, the likelihood parameter for JM-SCM(TAN) and JM-SCM(SIN) is 0.8867 and 0.5637 compared to 
0.6389, 0.6070, 0.4039, 0.3787 and 0.3716 respectively for JM-SAM(TAN), JM-SAM(SIN), SCM, SAM and JM. 
The least and highest value of JM-SCM measures in assessing the match between similar and dissimilar classes 
indicates its increased discriminability.  This improved performance can be attributed to the nature of JM-SCM 

measure to compute the least spectral correlation angle and stochastic distance along the entire length of the spectrum. 
 Such a discrimination is reflected in the quantum of accuracy of classification where the JM-SCM(TAN) and 
JM-SCM(SIN) have an higher accuracy of 93.75 % and 91.25 %. The accuracy of JM-SAM(TAN), JM-SAM(SIN), 
JM, SCM, SAM are 86.25%, 85 %, 76.25%, 75% and 71.25 % respectively. The higher accuracy of JM-SCM 
measures is due to the lesser uncertainty in identifying the correct matches shown as RSDE plots (Figure 3).  
From Table 1, it can be observed that for paddy, SCM has a lower detection rate of 55.6% with a false alarm in the 

range of 50 %. From the accuracy assessment, it was observed that most of the target paddy was classified as 
groundnut leading to an overestimation of the latter, with a detection rate of 66.7%. This overestimation of groundnut 
was suppressed as JM-SCM(TAN) and JM-SCM(SIN) resulted in a higher detection rate of (90.9%) and (81.8%). 
This was reflected in Table 1, where the SMI of JM-SCM measures in identifying paddy was the least (0.13, 0.25) 
compared to 0.90 of SCM. The SMI for JM-SCM measures in identifying each class was the least compared to other 
matching measures, thereby indicating its goodness in resulting in higher detection with lower false alarm.  
 

Original Image SAM JM SCM 

 

JM-SAM(TAN) 

 

JM-SAM(SIN) 

 

JM-SCM(TAN) 

 

JM-SCM(SIN) 

 
 
 
 
 

 

3.2 Study Site II –Muthupet Mangrove Ecosystem, Southern India 

 

The results of the classification based on the spectral matching approaches for SCM, JM-SCM(TAN), JM-SCM(SIN), 

SAM, JM, JM-SAM(TAN) and JM-SAM(SIN) are shown in Figure (4).  The spectral matching values among the 

reference classes (Avicennia, Prosopis, plantation, marsh, mudflat, sand, clear water and turbid water follows the 

order: JM-SCM(TAN)<JM-SCM(SIN)<JM-SCM(TAN)<JM-SCM(SIN)<JM<SCM<SAM. The least matching 

values indicate a higher discrimination among the target and reference spectra.  
The higher performance of the JM-SCM algorithms can be observed from the RSDPB plots as shown in the Figure 5. 
In the case of JM-SCM measures, RSDPB measures of the Avicennia class from the Prosopis and plantation classes 
was the (0.0047, 0.0124) and (0.0073, 0.0193) respectively. In the case of other measures ranging from 
JM-SAM(TAN), JM-SAM(SIN), JM, SCM and SAM, the RSDPB measures were (0.0145, 0.0195), (0.0236, 
0.0552), (0.0549, 0.0635), (0.0134, 0.0184) and (0.0493, 0.0580) respectively. The least of JM-SCM measures in 
assessing the match for Avicennia among closely similar classes indicates its increased discriminability 

Figure1 Results of classification of Pichavaram region using EO-1 Hyperion image 
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Figure 2  RSDPB plots for spectral   matching measures applied to Pichavaram region using EO-1 Hyperion images 



 
 

 

This discrimination is reflected in the quantum of accuracy of classification where the JM-SCM(TAN) and 

JM-SCM(SIN) had an higher accuracy of 91.25 % and 88.75 %. The accuracy of JM-SAM(TAN), JM-SAM(SIN), 

JM, SCM, SAM were 85%, 83.75%, 76.25%, 75% and 70% respectively. The higher accuracy of JM-SCM measures 

is due to less uncertainty in identifying the correct matches which is shown as RSDE plots (Figure 6).  
In the case of the sensitivity (Pd) and 100-specificity (Pf) values for Prosopis (Table 2), SCM has a lower detection 
rate of 66.7 % with a false alarm in the range of 40 %. From the accuracy assessment, it was observed that some of the 
target Prosopis are overestimated as Avicennia and plantation with a lower detection rate of 63.6% and 66.7%. This 
overestimation was suppressed as JM-SCM(TAN) and JM-SCM(SIN) resulted in a higher detection rate of (90.9%, 
90.9%) and (83.3%, 70%)  for Avicennia and plantation respectively. This was reflected in Table 2, where the SMI of 
JM-SCM measures in identifying Prosopis was the least (0.12, 0) compared to 0.60 of SCM. The SMI for JM-SCM 

measures in identifying each class was the least compared to other matching measures, thereby indicating its 
improved performance in yielding higher detection with lower false alarm. 
 

4 CONCLUSIONS 
 

This paper has presented a JM-SCM spectral matching approach which combines the capabilities of the Spectral 
Correlation Mapper (SCM) and the Jeffries-Matusita distance (JM) measure. The utility of the proposed algorithm in 
extracting information using hyperspectral images for a mangrove ecosystem has also been demonstrated. JM-SCM 

Table 1  Variations of sensitivity and 100-specificity values for the matching measures for Pichavaram region 

Matching 

Measures 

A R P G M S C T 

Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf 

SMI SMI SMI SMI SMI SMI SMI SMI 

SAM 
70 30 100 30 40 20 75 70 75 40 64.3 10 100 20 100 10 

0.43 0.30 0.50 0.93 0.53 0.16 0.20 0.10 

JM 
70 30 80 20 44.4 60 60 40 69.2 10 87.5 30 100 0 100 0 

0.43 0.25 1.35 0.67 0.14 0.34 0 0 

JM-SAM 

(TAN) 

75 10 100 30 64.3 10 83.3 50 90.9 0 100 0 90.9 0 100 10 

0.13 0.30 0.16 0.60 0 0 0 0.10 

JM-SAM 

(SIN) 

69.2 10 87.5 30 58.3 30 100 40 100 0 100 0 83.3 0 100 10 

0.14 0.34 0.51 0.40 0 0 0 0.10 

SCM 
100 30 80 60 55.6 50 66.7 0 61.5 20 90.9 0 80 20 80 20 

0.30 0.75 0.90 0 0.33 0 0.25 0.25 

JM-SCM 

(TAN) 

100 10 100 20 75 10 90.9 0 100 10 90.9 0 100 0 100 0 

0.10 0.20 0.13 0 0.10 0 0 0 

JM-SCM 

(SIN) 

100 0 100 10 80 20 81.8 10 100 10 90.9 0 90 10 90 10 

0 0.10 0.25 0.12 0.10 0 0.11 0.11 

Note: A-Avicennia, R-Rhizopora, P-Paddy, G-Groundnut, M-Mudflat, S-Sand, C-Clear Water, T-Turbid Water 

Pd- Probability of detection = Sensitivity  , Pf-Probability of false alarm = 100-Specificty 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

Avicennia Rhizopora Paddy Groundnut Mudflat Sand Clear Water Shallow 
Water 

Target classes 

R
S

D
E

  
v

a
lu

e
 

JM SAM 
JM-SAM 

  (TAN) 

JM-SAM  

    (SIN) 
JM-SCM  

 (TAN) 

JM-SCM  

 (SIN) 
SCM 

Figure 3 RSDE plots for spectral matching measures applied to Pichavaram region using EO-1 Hyperion images 



approaches out-performed the individual measures of SCM and JM with an increased classification accuracy of 
(93.75 % and 91.25 %) and (91.25 % and 88.75 %) for the Pichavaram and Muthupet mangrove ecosystems. This is 
due to the property of JM and SCM to simultaneously utilize the spectral and spatial information of the entire length 
of the spectral vector. Further, it has been demonstrated that the correlation angle (SCM) is a superior parameter than 
spectral angle (SAM) since the JM-SCM measures outperformed JM-SAM measures. A significant outcome of this 

work is the introduction of a new parameter called SMI to quantify the strength of spectral match. 
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Figure 4 Results of classification of Muthupet region using EO-1 Hyperion image 
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Figure 6 RSDE plots for spectral matching measures applied to Muthupet region using EO-1 Hyperion images 
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Figure 5 RSDPB plots for spectral   matching measures applied to Muthupet region using EO-1 Hyperion images 
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Table 2 Variations of sensitivity and 100-specificity values for the matching measures for Muthupet region 

Matching 

Measures 

A PR PL MA MF S C T 

Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf Pd Pf 

SMI SMI SMI SMI SMI SMI SMI SMI 

SAM 
100 30 36.4 60 36.4 60 75 10 83.3 50 71.4 0 81.8 10 100 20 

0.30 0.34 0.30 0.30 0.47 0 0 0 

JM 
87.5 30 80 60 53.3 20 66.7 0 83.3 50 81.8 10 83.3 0 100 20 

1.65 0.75 0.28 0.30 0.60 0.20 0.30 1.65 

JM-SAM 

(TAN) 

100 30 72.7 20 72.7 20 76.9 0 88.9 20 100 20 90.9 0 90 10 

1.65 0.38 0.28 0.33 0.30 0 0.43 1.65 

JM-SAM 

(SIN) 

100 30 66.7 20 61.5 20 80 20 80.0 20 100 0 100 0 100 20 

0.13 0 0 0.25 0.39 0.30 0.11 0.60 

SCM 
63.6 30 66.7 40 66.7 20 54.6 40 77.8 30 100 10 81.8 10 100 20 

0.60 0.60 0.23 0.25 0.39 0.30 0.11 0.60 

JM-SCM 

(TAN) 

90.9 0 100 20 83.3 0 90 10 100 30 83.3 0 100 10 90.9 0 

0 0.12 0.20 0 0.10 0 0.11 0 

JM-SCM 

(SIN) 

90.9 0 100 30 70 30 83.3 0 90 10 90.0 10 100 10 90.9 0 

0.12 0 0 0 0.12 0.10 0.10 0.12 

Note: A-Avicennia, PR-Prosopis, PL-Plantation, MA-Marsh, MF-Mudflat, S-Sand, C-Clear Water, T-Turbid Water 
Pd- Probability of detection = Sensitivity  , Pf-Probability of false alarm = 100-Specificty 


