
COMPARISON OF SPI AND IDSI APPLICABILITY FOR AGRICULTURE 

DROUGHT MONITORING IN SRI LANKA 

Peejush Pani1, Niranga Alahacoon1, Giriraj Amarnath 1, Gurminder Bharani1, Saptarshi Mondal2, C Jeganathan2. 

1International Water Management Institute (IWMI), Battaramulla, Sri Lanka. 
2Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, India. 

Email correspondence: p.pani@cgiar.org and a.giriraj@cgiar.org  

KEY WORDS: Drought, agriculture, IDSI, SPI, MODIS, TRMM, GPM, meteorology, python. 

ABSTRACT: 

Increasing frequency of drought events coupled uncertainty imparted by climate change pose grave threat to 

agriculture and thereby overall food security.  This is especially true in South Asian region where world’s largest 

concentration of people depends on agriculture for their livelihood. Indices derived from remote sensing datasets 

signifying different bio-physical aspects are increasingly used for operational drought monitoring. This study focuses 

on evaluating a newly created index for agricultural drought referred as Integrated Drought Severity Index (IDSI) in 

comparison with the traditional Standardized Precipitation Index (SPI) primarily representing precipitation condition 

to delineate drought using custom created ArcGIS toolbox for a period of fourteen years (2001-2014) in Sri Lanka. 

SPI created using remotely sensed PERSIANN precipitation dataset was compared with the IDSI created using hybrid 

datasets. IDSI is created based on seamless mosaic of remotely sensed multi-sensor data that takes vegetation 

(computed from MODIS data product MOD09A1), temperature (MOD11A2) and precipitation (TRMM & GPM) 

status into consideration.  The comparative study was made to assess the efficiency of newly created index and 

ArcGIS toolbox techniques for near real-time monitoring of spatio-temporal extent of agricultural drought. The result 

showed significant correlation of 0.85 between the two indices signifying the potential of using IDSI that integrates 

the response of agriculture drought variables (vegetation, rainfall, temperature and soil moisture) in monitoring short-

term drought and application in risk reduction measures.  

 

1. INTRODUCTION 

Demand for available finite water resources has increased manifold due to the growth and competing water uses for 

population and agricultural use, expansion, energy and industrial sectors. Uneven distribution, availability, 

contamination from over use and climate change have compounded problems of water scarcity, which has been 

occurring in alarming frequency in recent decades in many parts of the world. Monitoring drought has become an 

important phenomenon in recent year because of interlinkages between wide variety of sectors in diverse geographical 

and temporal distribution cascading drought effects. Drought accounts for 5% of all the natural disasters however it 

impact more than 30% of the total people affected by all natural disasters (EMDAT, 2016). Often indices are used to 

quantitatively measure, characterize and represent severity of drought conditions by integrating data from one or more 

variables representing bio-physical features such as rainfall, temperature, vegetation, etc. The body of indices 

representing different types of droughts, climatic and geographic conditions have exploded in the past two decades 

due to wide availability of open source remote sensing dataset imaging these features at regular intervals and increased 

computing resources amplified the applicability of this satellite images for operational or near-real time drought 

monitoring applications.  Number of reviews were undertaken to encompass different drought indices which 

numbered more than 150 (Mishra and Singh, 2010; Niemeyer, 2008).  

Over several decades the Palmer Drought Severity index (PDSI, Palmer, 1965), Standardized Precipitation Index 

(SPI, McKee et al., 1993), Percentage of Precipitation Anomaly (Zhang et al., 2009) and many others were 

successfully employed for characterizing drought conditions world over monitoring drought situation across range of 

spatial scales.  In 2010, World Meteorological Organization (WMO) selected the SPI as a key meteorological drought 

indicator for operational purposes.  The Standardized Precipitation Index (SPI-n) is a statistical indicator comparing 

the total precipitation received at a particular location during a period of n months with the long-term rainfall 

distribution for the same period of time at that location. SPI is calculated on a monthly basis for a moving window of 

n months, where n indicates the rainfall accumulation period, which is typically 1, 3, 6, 9, 12, 24 or 48 months (McKee 

et al., 1993). Estimation of SPI was initially based on the in-situ precipitation gauge information tends to be accurate, 

but depends on the density and distribution of meteorological stations, which ultimately lacks the spatial information 

(Brown et al., 2008). This spatial data gap were filled by satellite based information that provides sufficient  regular 

spatio-temporal remote sensing based precipitation data from  Tropical Rainfall Measuring Mission  (TRMM), Global 

Precipitation Measurement (GPM),  Aphrodite, GPCC, GPCP, etc. (Dutta et al., 2015).  

In the recent decade. Several indices have been developed to monitor vegetation stress and drought scenario such as, 

AVHRR based NDVI (Tucker et al., 1986), Vegetation Condition Index (VCI, Kogan, 1990), Percentage Average 
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Seasonal Greenness (PASG, Brown et al., 2008), Temperature Condition Index (TCI, Kogan, 1995a) and Temperature 

Vegetation Dryness Index (TVDI, Sandholt et al., 2002). SPI was commonly used along with these vegetation indices 

to determine and link how water stress lead to stress in agricultural crops.  Researchers have often combined VCI and 

TCI to derive vegetation health status or used all the three indices to undertake Principal Component technique (PCA) 

to derive integrated drought information. PCA has its own limitation as it depends on size of data, distribution of data, 

and PCA results from two MODIS tiles will not have continuity. In order to utilize the seamless data availability 

particularly from MODIS sensor for near real time drought monitoring a new index called Integrated Drought Severity 

Index (IDSI) was developed based on the data fusion technique which successfully resolved multi-resolution effect 

of VCI, TCI and PCI products (Jeganathan et al., 2015). IDSI was used to monitor and evaluate drought conditions 

across South Asian countries. As a part of the effort to build viable South Asia Drought Monitoring System (SADMS), 

this study was undertaken to assess the effectiveness of IDSI in capturing drought conditions in Sri Lanka against the 

conventional SPI. It is envisaged that in predominantly rainfed agricultural systems like Sri Lanka, meteorological 

drought often transforms into agricultural drought due to the direct linkages between monsoonal rainfall for water 

dependency and vegetative stress conditions. In this case close correlation will exist between SPI and IDSI 

representing the cause effect of rainfall on vegetative stress which can be used to evaluate the efficiency of IDSI in 

Sri Lanka geo-climatic conditions.  

 

2. STUDY AREA AND DATA USED 

Sri Lanka lies between 6o and 10o N latitude and between 80o and 82o E longitude in the Indian Ocean, with a land 

area of nearly 65,610 km2 and population of 20 million. With its tropical climate, Sri Lanka receives rainfall primarily 

from south-west monsoon rain from May to July and north-east monsoon from October to January. The mountains 

located in the central part of Sri Lanka is major source for majority of rivers. Owing to this monsoonal climate, clear 

linkages exist between distribution of rainfall and seasonal distribution of droughts. The inter-monsoon period during 

January-March and August-September show clear relationship with the high number of drought occurrences. 

Historical record indicate that Southern Sri Lanka, in particular Hambantota province with its semi-arid climate 

appears to be frequently affected by drought conditions.  

 

Terra MODIS surface reflectance MOD09A1 (500m) (2001-14) was used to compute time series NDVI and VCI at 

8-day interval, MODIS land surface temperature MOD11A2 (1km) (2001-14) was used to compute TCI, TRMM 

3B42 (0.25 degree) precipitation estimate (2001-14) was used to compute PCI and PERSIANN CDR (0.25 degree) 

rainfall estimate of 32 years (1983-2014) was used to prepare the 1-month and 3-month SPI. The summary of datasets, 

its time period, resolution and data sources are provided in Table 1.  

 

S. 

No 
Data Detail Resolution Duration Source Link 

1 

MODIS 

Reflecta

nce 

MOD09A1 

Surface 

Reflectance 8-

day Composite 

500m 
2001-

2014 
NASA 

http://reverb.echo.nasa.gov/re

verb/ 

2 

MODIS 

Surface 

Tempera

ture 

MOD11A2 Land 

Surface 

Temperature 8-

day Composite 

1km 
2001-

2014 
NASA 

http://reverb.echo.nasa.gov/re

verb/ 

3 
TRMM 

Rainfall 

3B42 Daily 

precipitation 

estimates 

0.25 Deg 
1998- 

2014 

NASA-

JAXA 

http://disc.sci.gsfc.nasa.gov/S

SW/#keywords=TRMM_3B4

2_daily%207 

4 

PERSIA

NN 

Rainfall 

Daily Global 

rainfall estimates 
0.25 Deg 

1983-

2015 

CHRS, 

University 

of 

California 

http://chrs.web.uci.edu/persia

nn/data.html 

5 

GLC 

2010 

Land-

use 

Global Thematic 

Map 
30m 2010 

National 

Geomatics 

Centre of 

China 

http://www.globallandcover.c

om/  

Table 1: List of dataset used  

 

http://www.globallandcover.com/
http://www.globallandcover.com/


3. METHODOLOGY 

MODIS surface reflectance MOD09A1 8-day composite (500m) for a period of 2001-14 was availed from the ftp 

server in the HFD file format using automated python scripting. Similar procedure was followed for MODIS land 

surface temperature MOD11A2 8-day composite (1km) for the same time period. Both the products were converted 

to IMG file format using ERDAS Imagine 2014 software package. The red (1) and NIR (2) bands of the surface 

reflectance data was to compute NDVI using ADAMS tool (Jeganathan et al., 2015). Data gaps and noises were 

removed using temporal moving window and neighborhood analysis respectively. To enhance the seasonal variation 

and annual pattern, Discrete Fourier Transformation (DFT) was used considering its ability of smoothening and wide 

usage (Jeganathan et al. 2010). Considering the large amount of gaps in land surface temperature, linear interpolation 

technique was adopted and neighborhood analysis was implemented to eliminate the noises. Similar to NDVI, DFT 

was used smoothen and enhance the seasonal trend of LST. The TRMM precipitation estimates were used in its real 

form considering the nature of its time-series pattern and zero values coinciding with non-rainy days. The daily 

TRMM was grossed to 8-day rainfall sum to match with the MODIS 8-day composite data products according to 

Julian days. 

  

Figure 1. Methodology for integration of satellite data and other secondary information for drought monitor 

3.1. Computation of Indices 

The processed NDVI, LST and TRMM data were used to compute Vegetation Condition Index (VCI), Temperature 

Condition Index (TCI) and Precipitation Condition Index (PCI). All three indices were standardized into values from 

0 to100. 

3.1.1. Vegetation Condition Index (VCI) 

Though NDVI gives a picture of vegetation greenness of a particular time with values ranging from 1- to +1, it fails 

to enhance the nature of the vegetation type and its growing trend. VCI considers the long-term range of a particular 

vegetation type and compares the current condition according to this range (Kogan, 1995b). VCI is computed using 

the following formula:  

𝑉𝐶𝐼 =  
𝑁𝐷𝑉𝐼𝑐𝑢𝑟𝑟−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
∗ 100     (Eq. 1) 

Where, NDVIcurr is the current NDVI for a given pixel and the NDVImin and NDVImax are the fourteen years’ minimum 

and maximum NDVI value for that same given pixel. The value closer to zero depicts vegetation stress and values 

near to hundred reflects healthy condition. 

 

 



3.1.2. Temperature Condition Index (TCI) 

Since the land surface temperature reacts in the inverse manner (lower the temperature, more suitable is the condition 

for plant growth), it also needs to be standardized. TCI is a thermal stress indicator that identified drought like situation 

with the temperature condition (Kogan, 1995a). The formula for TCI is as follows: 

𝑇𝐶𝐼 =  
𝐿𝑆𝑇𝑚𝑎𝑥−𝐿𝑆𝑇𝑐𝑢𝑟𝑟

𝐿𝑆𝑇𝑚𝑎𝑥−𝐿𝑆𝑇𝑚𝑖𝑛
∗ 100     (Eq. 1) 

Where, LSTcurr is the current LST for a given pixel and LSTmax and LSTmin are the fourteen years’ maximum and 

minimum LST value for that given pixel. Values closer to zero shows thermal stress condition for vegetation growth 

and closer to hundred reflects highly favorable condition. 

3.1.3. Precipitation Condition Index (PCI) 

Rainfall plays the major and direct role in all kinds of vegetation growth cycle, whether it is evergreen ecosystem or 

agricultural land. The amount of rainfall in a particular season determines the status of plant growth. Thus looking 

into the historical scenario of rainfall pattern for a given time in a given place needs to be considered. The equation 

for PCI is mentioned as follows: 

𝑃𝐶𝐼 =  
𝑇𝑅𝑀𝑀𝑐𝑢𝑟𝑟−𝑇𝑅𝑀𝑀𝑚𝑖𝑛

𝑇𝑅𝑀𝑀𝑚𝑎𝑥−𝑇𝑅𝑀𝑀𝑚𝑖𝑛
∗ 100    (Eq. 3) 

Where, TRMMcurr is the current net rainfall for 8-days, TRMMmax and TRMMmin are the fourteen years’ maximum 

and minimum net rainfall for that given time and location. 

3.1.4. Integrated Drought Severity Index (IDSI) 

 S newly developed Integrated Drought Severity Index (IDSI) was computed to assign an area as into different levels 

of drought stress considering all the three basic components, namely vegetation, temperature and precipitation 

conditions. The formula for IDSI is as follows: 

𝐼𝐷𝑆𝐼𝑖𝑗𝑘 =  [𝐿 ∗ 𝑉𝐶𝐼𝑖𝑗𝑘 ∗ {𝑐 +
1

(𝐿∗(𝑉𝐶𝐼𝑖𝑗𝑘+𝑇𝐶𝐼𝑖𝑗𝑘+𝑃𝐶𝐼𝑖𝑗𝑘+𝑐)
∗ (𝑇𝐶𝐼𝑖𝑗𝑘 + 𝑃𝐶𝐼𝑖𝑗𝑘)}]  (Eq. 4) 

This index also ranges from 0-100 with values closer to zero showing extreme drought and that near to zero as healthy 

condition.  

All these indices computation and pre-processing of remote sensing data are complex enough to give an error free 

output. Thus after intense research, modeling and real-time experiments, a compact package of geoprocessing too 

was developed to handle all these complexity of multi-source remote sensing datasets. The tool has been named as 

ADAMS (Agricultural Drought Assessment and Monitoring System) in ArcObject VBA platform of ArcMap. 

3.1.5. Agricultural land-cover masking 

Since different vegetation type has its own typical growing phenology, and this study concentrates on identifying 

drought like scenario only on agricultural lands. Crop area were extracted from entire Sri Lanka. This particular 

process was done using Global Land Cover (GLC-2010) prepared by National Geomatics Centre of China. This 

particular product is available at 30m spatial resolution with an accuracy level of 83.5%. The cropland from this 

product was extracted and resampled to 500m resolution to match the IDSI output. The non-agricultural land was 

then masked out to avoid any misinterpretation. All the analysis of IDSI were then soulfully carried out on agricultural 

land-cover. 

3.1.6. Gridded SPI computation 

In the Interregional Workshop on Indices and Early Warning Systems for Drought was organized and held at the 

University of Nebraska-Lincoln WMO (World Meteorology Organization) accepted SPI to be a standard to identify 

meteorological drought (Wilhite, 2000). With the development of a SPI toolbox in ArcMap platform as part of 

ADAMS toolset, availability of long-term gridded rainfall data to establish a climatological trend (30 years) was 

fulfilled. The in-house SPI (Standardized Precipitation Index) tool is developed in python by using standard python 

libraries and scipy extension which has inbuilt gamma distribution function required for calculation of SPI the script 

has been developed by using procedural programming approach, the tool has been engineered to calculate SPI over 1 

month to 60 months to study meteorological drought over short to long period of time. The tool has been tested and 

verified on ArcMap Desktop 10.3 and 10.4. The final output is a raster where every pixel has a SPI calculated based 

on the passed records over years. The output of the tool has been verified by the WMO (World Meteorology 

Organization) based windows program which has command prompt user interface. 



  

Figure 2: Python tool interface for computing gridded SPI 1-12 month (left) & 13-60 month (right) in ArcMap 

platform. 

4. RESULTS AND DISCUSSION 

 

4.1. IDSI vs SPI Spatial Comparison  

The 8-day IDSI was computed and further generalized to monthly mean IDSI for a corresponding comparison with 

the SPI which uses monthly accumulated rainfall to calculate 1-60 month Index values. In this study, the Yala season 

(May to September) of Sri Lanka coinciding with the agricultural activity during south west monsoon for four 

individual years has been considered. A spatial comparison of four years (2006, 2007, 2012 and 2013) for the month 

of August were made between SPI and IDSI covering whole of Sri Lanka (Fig 6). Two rainfall deficit years (2006 

and 2016) are noticeable from the SPI map. During 2006, the central province of Sri Lanka consisting of 

Anuradhapura and eastern provinces consisting of Polonnaruwa and parts of Batticaloa were mapped to be under 

drought conditions. The severity of 2012 drought is also evident from the high rainfall deficit across most of the Sri 

Lanka.  Corresponding time period (2006 and 2012) map of IDSI also reveals similar phenomenon revealing drought 

conditions in North-Central hilly regions and eastern provinces. The Southern province of Hambantota, which were 

traditionally considered drought prone was under normal condition in both SPI and IDSI map. The hybrid nature of 

IDSI, enabled it to differentiate between different drought clusters event within individual provinces such as shows 

extreme and severe drought category within affected Anuradhapura, Polonnaruwa and parts of Batticaloa provinces. 

The resultant medium resolution gridded index based on IDSI can be used at much local scales compared to the 

remotely sensed precipitation data derived SPI map which based on pixel density smoothed the areal coverage. 

Similarly the good years (2007 & 2013), in terms of rainfall, also shows larger spread of normal and healthy classes 

of IDSI. The year 2007 is better compared to 2013 as represented by both SPI and IDSI. 

 

Figure 3: Spatial comparison of 3-month SPI (Jun-Aug) and IDSI August in different years. 



4.2. IDSI vs SPI Temporal Comparison 

The time series values of spatial average of IDSI in the agricultural area for the study area (Sri Lanka) was plotted 

against the corresponding spatial average of 3-month SPI of Sri Lanka (Fig. 7). Both the time series profiles from 

2001 to 2014 exhibit similar yearly trends. This is particularly evident in the drought years of 2002-03, 2009-10 and 

2012-13 where drought conditions are marked with downward spike in both IDSI and SPI profiles. The average IDSI 

hovers around 45 % and dips significantly whenever SPI tends towards large negative values indicating drought 

conditions. The trend between the two indices matches close to 72% with each other. The average IDSI in agricultural 

land for the whole time period lies between 27 and 65 whereas, the average SPI from -2.6 to +2.2. The lower value 

ranges of IDSI and SPI coincides with the drought years and vice versa. The heterogeneity involved in datasets and 

approaches cause the remaining deviation in trend between these two indices.  

 

Figure 4: Time series comparison of IDSI and SPI for the time period of 2001-2014 for Sri Lanka. 

4.3. IDSI vs SPI correlation 

Figure 8 and 9 shows scatter-graphs of monthly IDSI and 3-month SPI where, the mean IDSI of each district’s 

agriculture area is compared with its corresponding SPI values. Each graph containing two years 2006 – 07 and 2012 

- 14, comprising of 24 districts’ (except Jaffna) spatial mean values of SPI and IDSI were considered. Thus summing 

up to 48 scatter points in individual scatter-graph for establishing the relationship between the two variables. This 

comparison shows that there exist significant correlation (r) of 0.85 and 0.86 between the two indices in both the 

graphs, highlighting severe drought affected years of 2006, 2012 as well as 2014.    

 

Figure 5: Scatter-graph and linear correlation between IDSI and SPI for the years 2006 (dry) and 2007 (wet). 
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Figure 6: Scatter-graph and linear correlation between IDSI and SPI for the years 2012 and 2014. 

5. CONCLUSION 

Spatial and statistical analysis to compare the traditionally well-known SPI and the newly developed IDSI shows that 

there is a good correlation between the indices. The lacking proportion of similarity is also as per expectations. The 

reason can be attributed to nature, data and difference in the spatial resolution of both the indices. Detailed variation 

of several important components like vegetation, temperature and rainfall considered in case of IDSI unlike only 

rainfall in SPI could explain the gap between two indices. The correlation of 0.85 well explains the inter-relationship 

between agricultural and meteorological drought.  
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