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ABSTRACT: Tree count and individual tree crown delineation are common for forest resource inventory and 

assessment. This study attempts to derive a process tree to extract tree count and delineate individual tree crown using 

available LiDAR data for forest plantations. Two-hectare plot from a Broadleaf and a Coniferous Plantation Forest 

were established and undergone field inventory. Using the LiDAR derived Canopy Height Model (CHM) or the 

Normalized Digital Surface Model (nDSM) of each sample plot, Object-based Image Analysis (OBIA) is applied 

using a software. The general OBIA workflow involves image segmentation, classification, finding local extrema, 

and region growing. A tree top was determined by getting the local maxima with a specific search range, and then 

tree crown was individually delineated through region growing algorithm which is also assumed to be equivalent to 

individual trees. The accuracy of the results was determined by comparing the total number of tree count estimates 

with the actual number of trees in the field and by looking onto the accuracy of the location of the tree top, comparing 

the estimates with field measured location of the trees using different sub-plot sizes (5 by 5 meters, 10 by 10 meters, 

and 20 by 20 meter sub-plots). Results show that the estimated tree count has percent difference of 0.98% and 1.33% 

for Broadleaf and Coniferous plantation forest, respectively. Tree tops were more effectively counted in Coniferous 

plantation forest with 0.91 R2 and RMSE of 3 trees in the 20-meter resolution. 

 

1. INTRODUCTION 

 

Accurate and up-to-date accounting of forest resources is becoming a more important step towards reversing the 

dwindling trend of these resources. Reduction in forest cover and biomass said to be the primary cause of global 

warming and therefore climate change. Characterizing forest resources include accounting for their biophysical 

parameters such as biomass and carbon stock. Accurate assessment of these parameters are essentially and 

conventionally dependent with direct measurements of the forest structure particularly characterized by the inventory 

data derived locally (Ferraz et al., 2016).    

 

Scott & Gove (2002) explained that “forest inventory is the accounting of trees and their related characteristics of 

interest over a well-defined land area”. It includes tree count within the land area and other information such as tree 

volume, value, growth and species composition. Forest inventory is considered to be quite intensive and challenging, 

especially to the Philippines which majority of its forest is considered as tropical rainforest. Vegetation of tropical 

rainforests is tedious and diverse in nature which makes the inventory of these forests very challenging (PTFCF, 

2015).  

 

Because of the forest inventory being challenging and tedious, there are a number of technologies that can be used 

as an alternative and as an aid for the exhaustive methods forest inventory and assessment. LiDAR is one of the 

technologies that has been widely used in different fields, one of these field or industry is Forestry. LiDAR provides 

data for forest canopy and terrain that helps forest managers and decision makers do their tasks (Esri, 2010). For this 

study, Object-based Image Analysis (OBIA) was used. OBIA is “a sub-discipline of GIScience devoted to 

partitioning remote sensing (RS) imagery into meaningful image-objects, and assessing their characteristics through 

spatial, spectral and temporal scale” (Hay & Castilla, 2006). 

 

DENR (no date) relates Plantation Forest or Forest Stand or sometimes interchangeable with the term Industrial 

Forest Plantation with the process of afforestation or reforestation specifically through seeding or planting. Industrial 

Forest Plantation on the other hand is defined as area of land that has purpose of producing forest resources, timber 

being the major resource but also includes secondary forest resources such as the non-timber forest products (e.g. 

bamboo, rattan), to supply the needs of the processing plants for raw materials. Forest plantation which trees has 



planned tree spacing can also be classified based on the species composition of the stand, either broadleaf or 

coniferous and if the canopy is considered closed (more than 10% cover) or open (less than 10% open).  

 

Furthermore, to explain how an image is being segmented and what parameters are being considered in the 

classification of the delineated objects, as defined, grouping of pixels of an image in a given resolution which formed 

or represents linear and polygonal features on the ground and is assumed to depict same pixel values, is called 

segmentation. After the pixels were grouped and the objects were delineated from the image, classification process 

is the second phase which follows the principle of class membership. Image segments or objects are being assigned 

to classes by per-pixel classification. The pixel grouping is based from the analysis of the majority of pixel values 

present hence the grouping into segments/objects. A discriminant factor is being used or a membership function 

classifier which is taking into account the statistical measures of the frequency distribution of the pixel values (e.g. 

measures of central tendency, image brightness, color, texture and etc.). This is the principle behind the assignment 

of specified classes per delineated segment of the image (Fischer & Getish, 2010).  

 

The goal of the study is to develop an effective method to extract tree count and to delineate the individual tree crown 

with the use of Object-based Image Analysis. Hence developing a process tree applicable for Broadleaf Coniferous 

Plantation Forests. This will be achieved through: 

a. Application of the general workflow of OBIA to detect individual tree tops and crown delineation;  

b. The use of LiDAR-derived Canopy Height Model (nDSM) as primary input to the OBIA; and 

c. Modification of the custom OBIA workflow applicable specifically to BPF and CBF for robust 

implementation. 

 

The study documented the implications of the application of OBIA to Broadleaf Plantation Forest (BPF) and 

Coniferous Plantation Forest (CPF), which are different as far as the structure is concerned as well as the type of 

management over the two areas. Tree count estimate could give a good information that could help 

foresters/researchers for forest management and utilization, as well as to tree crown. In addition, tree crown is also 

related to above-ground biomass investment with consideration of light interception of trees (Selaya et al., 2006), 

which can be beneficial to further forest resource assessment. 

 

2. DATA AND METHODS 

 

2.1. Site Description 



 
Figure 1. Location Map of (a) Tarlac, Philippines and (b) Brgy. Oloybuaya in Municipality of Gerona; View of two 

(2) – hectare plot of Broadleaf Plantation Forest in (c) LiDAR Ortho-photo and (d) LiDAR-derived Canopy Height 

Model 

 



 
Figure 2. Location Map of (a) Bukidnon, Philippines and (b) Brgy. Silo-O in Municipality of Malitbog; View of 

two (2) – hectare plot of Coniferous Plantation Forest in (c) LiDAR Ortho-photo and (d) LiDAR-derived Canopy 

Height Model 

 

For this study, a Broadleaf Plantation Forest (BPF) and a Coniferous Plantation Forest (CPF) were considered as 

study sites. The study sites are located in the province of Tarlac and province of Bukidnon, respectively. The BPF is 

composed of Big-leaf Mahogany (Swietenia macrophylla) with a 2.5 by 5-meter spacing. On the other hand, CPF is 

composed of Caribbean Pine (Pinus caribaea) with a 3 by 5-meter spacing. Figure 1 and 2 shows the location map 

of broadleaf plantation and coniferous plantation forests, respectively. 

 

2.2. Field and LiDAR Data 

 

A two-hectare plot was established in each plantation sites for field inventory. Direct measurements of the diameter-

at-breast height (dbh), tree height, individual tree geo-tagging, and canopy cover using Digital Hemispheric 

Photography (DHP) were conducted during field validation. The BPF in Tarlac was surveyed on June 2015 while 

CBF in Bukidnon was surveyed on February 2015. There are total of 1409 trees and 985 trees inventoried in BPF 

and CPF respectively.  

 

The airborne LiDAR data for BPF was acquired on January 2013, while for CBF was acquired on August 2013. 

LiDAR point cloud data was processed to produce normalized Digital Surface Model (nDSM) and create Canopy 

Height Model. The algorithm used to generate a LiDAR pit-free CHM is from the method of Khosravipour et al, 

(2013). 

 

 

2.3. Methodology 

 

The modified general algorithm patterned from OBIA is found in Figure 3. The study patterned the workflow after 

Tiede and Hoffman (2006) in detecting individual trees. Fisher & Getis (2010) had compiled explanations tackling 

the emerging Geographic Object-based Image Change Analysis (GeOBICA) which is based from Geographic Object-



based Image Analysis or simply GeOBIA or OBIA. These image analyses follow the custom OBIA paradigm which 

starts from the forming of segments or the so-called objects through image segmentation. From these segmented 

objects from the image, classification or grouping of these objects follows. In the study, the segments between 

vegetation and gap were delineated. Features belong to the vegetation that have Canopy Height above 1.3 meters, 

and the gap from the height values below 1.3 meters. Afterwards, the study suggested to add, from the custom process 

of OBIA, the chessboard segmentation, generation of the local maxima, and then treating the local maxima as seeds 

for the region growing algorithm. Added refinements of the results is applied throughout the process such as the 

merge region and removal of small objects. Merge region algorithm as explained by Peng et al. (2010), is basing the 

merging or grouping of obtained objects or segments from a homogeneity criterion. This criterion is based on 

statistical properties, graph properties, or from spatio-temporal similarity of the group of pixels belonging to the 

formed objects from the segmentation. Distance and uniformity from each object were the primary criterion in 

merging segments. Region merging is considered as second level in grouping the pixels. First level is the grouping 

of the pixels into an object or segment in the segmentation process and then the second level which is the grouping 

of this said segments into a larger region. Merge region was used to merge special cases with 2 to 3 detected tree top 

and also adjacent to each other. These adjacent local maxima are assumed to be in only one tree or treated as one tree 

individual. While removal of small objects is done to remove some errors or noise in local maxima detection. These 

small objects are objects with less than the threshold area of an average tree in BPF and CPF, which are considered 

outliers. 

 

 
Figure 3. Developed algorithm based from the general OBIA workflow in eCognition Developer software. 

 

Furthermore, with the use of the LiDAR-derived CHM as an input, the process tree starts with the segmentation 

process of the image and then classification of the segmented objects for the assumed tree area. The threshold for 

upper vegetation is height value greater than or equal to the height of the tree from the ground where the DBH is 

measured (1.3 meters). This part of the process also excludes the gap from the vegetation. The gap depicts the ground 

in the image which will not be considered in detection of tree top or local maxima. In the segmentation process, 

multiresolution segmentation algorithm is often used, but for this study, contrast split segmentation algorithm is 

applied since the chosen algorithm is primarily giving more value to the contrast feature of the image in the 

segmentation. This algorithm differentiates bright object versus dark objects (Trimble, 2014). Bright objects are 

classified as upper vegetation or tree area, while dark objects are left unclassified for it is also considered as gaps or 

open spaces.  

 

The classified tree area is then segmented into smaller objects with the application of the Chessboard segmentation. 

Using this algorithm, the classified object tree area from earlier is segmented into squares or pixels (Blaschke, et. al, 

2008). In this part of the process, we assume that the gaps were no longer considered since segments/objects with 

canopy height values below the 1.3 meters. The square sizes are set to the value of one (1) meter. This resulted to the 

same size as the resolution of the input CHM which is one meter. The aim of this algorithm is to arrive at an object 

size that could represent a single point/object for the detection of local maxima. Then, using find local extrema, local 

maxima is determined using a specific search range. For the case of two plantation forest, search range is equal to 

two (2) pixels or meters, since LiDAR CHM used has a resolution of one (1) meter. Tree spacing of the plantation is 

first considered in setting of the search range. Both plantations have almost three-meter spacing at a certain 

orientation. The search range was experimented on different search ranges to see which would result in a reasonable 

count value. Local maxima are assumed as tree top which represents individual trees (Blaschke, et. al, 2008). 

 

Using region growing algorithm, individual tree crown was delineated. Region growing starts with as single object, 

called seed points, and it grows as it merges neighbor objects that fits the characteristics to candidate classes and 

threshold (Blaschke, 2008). In this case, detected tree tops were used as seed points. Region grows from the seed 

points up to the edge of the tree crown. This assumption delineates the individual tree crown at its maximum range 

considering the tree spacing.  

 

Removal of small objects is done because of some erroneous in tree top detection and region growing. Some objects 

are too small to be considered as trees. Therefore, some threshold has been applied to limit and remove errors. 

Different threshold is applied per forest type. 

 

3. RESULTS AND DISCUSSION 



 

3.1. Tree Count and Individual Tree Crown 

 

Tree count and individual tree crown were extracted from LiDAR derived CHM. For Broadleaf plantation, 1,423 

trees were detected, while 972 trees in Coniferous plantation. Both tree count estimates have acceptable percent 

difference to the actual tree count, shown in Table 1.  

 

On the test run, value of as search range is tested, but the result is not as good as compared to using the value of two 

as search range. Therefore, this study arrived at using the value of two (2) pixels as the search range for the two 

plantations, showing relatively promising results. 

 

Table 1. Results of tree count estimation in Broadleaf Plantation and Coniferous Plantation 

2-hectare Plot 
Actual Tree 

Count 

Estimated Tree 

Count 

Percent 

Difference 
Remarks 

Broadleaf Plantation 1,409 1,423 0.98% Over-estimated 

Coniferous Plantation 985 972 1.3% Under-estimated 

 

As seen in Figure 4, the delineated individual tree crown has visually promising results. The result of the individual 

tree crown delineation using OBIA needs to be smoothened using a tool in ArcGIS software which is calculated by 

the Polynomial Approximation with Exponential Kernel (PAEK) algorithm. Improving the aesthetics and the 

cartography quality of the delineated crown is the essence of smoothing the sharp angles in the vector file produced 

in OBIA (Esri, 2010). 

 

 
Figure 4. Portion of the 2-hectare plot with properly delineated individual tree crown of the broadleaf plantation 

forest (a) and coniferous plantation forest (b), overlaid on the Canopy Height Model. 

 

 

 

3.2. Accuracy Assessment 

 

To test whether the trees counts and positions are consistently estimated, the 2-hectare plots were subdivided into 

different subplot sizes (5 by 5 meter, 10 by 10 meter, and 20 by 20 meter subplots) Both plantations site have good 

linear relationship between estimated and actual tree count in the 20 by 20 meter subplots. Table 2 shows the 

correlation coefficient and root mean square error (RMSE) for each sub-plot resolution in BPF and CPF. In both 

plantation types, the best correlation of the estimates is observed in larger grid size/lower resolution. It can be seen 

from Table 2 that in the 30-meter resolution, the r-squared is 0.70 and 0.97 for BPF and CPF respectively. In the case 

of the RMSE, the values for the lower grid size were normalized relative the 30 by 30 - meter grids. It then shows 

that the highest resolution also gave the highest accuracy and lowest relative error, having an error of around 12 and 

3 trees for BPF and CBF respectively. The normalization of the RMSE was done to have fair comparison of errors 

per subplot resolution. The scatter plots for 20 by 20 meter subplots and 30 by 30 meter subplots are shown in Figure 

5 and 6 for Broadleaf and Coniferous plantation forest, respectively. 

 



Table 2. Summary results of accuracy assessment in each sub-plot resolution. 

Analysis 

Broadleaf Plantation Forest Coniferous Plantation Forest 

5m by 

5m 

10m by 

10m 

20m by 

20m 

30m by 

30m 

5m by 

5m 

10m by 

10m 

20m by 

20m 

30m by 

30m 

No. of sub-

plots 800 200 50 28 920 250 74 37 

R2 0.02 0.07 0.14 0.70 0.25 0.53 0.91 0.97 

RMSE 1.35 2.93 6.74 11.86 0.79 1.43 2.32 2.99 

Normalized 

Error 
49 26 15 12 28 13 5 3 

 

 

 
(a)                                                                          (b) 

Figure 5. Scatter plot of the comparison of tree count estimate and actual tree count in 20 by 20 meter 

subplots of Broadleaf (a) and Coniferous (b) Plantation Forest. 

 

 
(a)                                                                                       (b) 

Figure 6. Scatter plot of the comparison of tree count estimate and actual tree count in 30 by 30 meter 

subplots of Broadleaf (a) and Coniferous (b) Plantation Forest. 

 

Comparing the two plantations, the tree count estimates in Coniferous Plantation has better results both in tree count 

estimation and correlation between actual tree location and detected tree tops. Figure 7 shows the histogram of errors 

for 20 by 20-meter plot for BPF and CPF, and Figure 8 for 30 by 30 meter subplots. This graph shows the frequency 

per range of errors in counting the tree individual per plot. It can be observed from figure 8 that the graphical 

representation of errors in estimating the tree count in (b) CBF is generally symmetrical. While in (a) BPF, the 

histogram follows a bimodal to multimodal pattern in the 20 by 20 and 30 by 30, respectively. Estimation of tree 

count per plot (20 and 30 𝑚2) in CBF can be described as random. On the other hand, poor observation of the error 

plot in BPF can be caused by the doubling of canopies which were considered as one tree in the local maxima 

determination, hence overestimation. 

 



 
Figure 7. Histogram of count errors for 20 by 20-meter plots in (a) Broadleaf and (b) Coniferous 

Plantation Forests. 

 

 
Figure 8. Histogram of Errors for 30 by 30-meter plots in (a) Broadleaf and (b) Coniferous Plantation 

Forest 

 

The errors observed can be caused by the morphological differences of the species present in the plantation site. The 

result of both estimation of tree count for CBF and BPF yielded an acceptable result as based from the r-squared as 

well as to the RMSE. But results for CFP is better than that of the BFP. The primary reason for the less favorable 

outcome for BPF is the fact that broadleaf species tend to have two or more canopies per individual tree. The ratio of 

the number of canopies per tree is impossible to be observed on a broadleaf tree species. In nature, broadleaf tree 

structure tends to have double canopies, an umbrella-shaped canopy and have no distinct top. This is in contrast to a 

tree in CFPs which has cone-shaped canopy structure is and has relatively pointed top/tip. This form of conifers 

makes tree top detection more possible. Also, conifers usually only have one canopy top. That being said, species 

composition (which is between coniferous and broadleaf trees in this study) of the area is a great factor that can affect 

the detection of tree top and tree crown delineation. Another explanation could be the discrepancy with the time of 

acquisition of the LiDAR data (2013) and the date the local field survey/inventory was done (2015). The more or less 

two-year discrepancy could affect the composition and physical structure of both plantations hence a possible cause 

for the decrease or increase of the number of trees physically present on both plots during the field inventory. 

 

It should also be noted that the accuracy of this study is limited only to tree count. There is no field data that could 

be used to assess the accuracy of individual tree crown delineation.  

 

4. CONCLUSION 

 

Using OBIA, tree count and individual tree crowns was extracted in LiDAR-derived CHM for broadleaf and 

coniferous forest plantations. Detection of tree top and individual tree crown results were found to be satisfactory 

and able to represent each tree in the area. For both plantation forest sites, estimated tree count was comparable to 

actual tree count. With reference to the accuracy of the position of points which gave the idea of how well OBIA 

estimated the tree count into different sub-plot sizes, more favorable results were obtained from the estimation of the 

coniferous plantation forest. In 20-meter resolution, OBIA effectively estimated the tree count, locate the tree top and 

furthermore tree crown delineation for the Coniferous Forest Plantation. Given that the structure of the trees in the 

plantation forms a more likely cone shape and that less manifestation of overlapping tree crowns and doubling of 



crowns per tree. It can be said that a larger grid size or lower resolution or, OBIA is effective in estimating the tree 

count hence in the tree crown delineation.  

 

5. ACKNOWLEDGEMENT 

 

This research is funded by the Department of Science and Technology (DOST) under the Nationwide Detailed 

Resource Assessment Using LiDAR (Phil-LiDAR 2), Project 3: Forest Resource Extraction from LiDAR Surveys 

(FRExLS). Utmost acknowledgement is given to the Disaster Risk and Exposure Assessment for Mitigation (UP 

DREAM) and Phil-LiDAR 1 for the LiDAR data of the study site. Due recognition is also given to the Central Luzon 

State University (CLSU) and J & E Development Corporation, Central Mindanao University (CMU) and Bukidnon 

Forest Incorporated (BFI) for their assistance the field works. 

 

6. REFERENCES 

 

Department of Environment and Natural Resources (DENR). No date. Philippine official reference for forest-related 

terms and definitions. A PDF file retrieved from www.forestry.denr.gov.ph on August 2016 

 

Esri. 2010. LiDAR Analysis in ArcGIS 9.3.1 for Forestry Applications. 380 New York Street, Redlands, CA 

92373-8100 USA. Retrieved from https://www.esri.com/library/whitepapers/pdfs/lidar-analysis-forestry.pdf 

 

Fischer M., Getis A. 2010. Handbook of Applied Spatial Analysis. Springer Heidelberg Dordrecht London New 

York 

 

Hay, G. J. & Castilla, G. 2006. Report on the Joint ISPRS Commission IV “Object-based Image Analysis: 

Strengths, Weaknesses, Opportunities, and Threats (SWOT)”, Canada. 

http://www.isprs.org/proceedings/XXXVI/4-C42/Papers/01_Opening%20Session/OBIA2006_Hay_Castilla.pdf 

 

Peng B., Zhang L., & Zhang D. 2010. Automatic Image Segmentation by Dynamic Region Merging. A PDF file 

retrieved from https://arxiv.org/abs/1012.1193 on September 2016 

 

Philippine Tropical Forest Conservation Foundation (PTFCF). 2015. Status of Philippine Forests. A PDF file 

retrieved from http://www.ptfcf.org on August 2016. pp. 3-5 

 

Scott, C. T. & Gove, J. H. 2002. Forest Inventory. Volume 2. John Wiley & Sons, LTD, Chichester. Retrieved from 

http://www.fs.fed.us/ne/durham/4104/papers/Gove18.pdf. pp. 814-820 

 

Selaya, N. G. et.al. 2006. Above-ground Biomass Investments and Light Interception of Tropical Forest Trees and 

Lianas Early in Succession. Annals of Botany 99. Retrieved from 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802976/pdf/mcl235.pdf. pp. 141-151 

 

Tiede, D. & Hoffmann, C. 2006. Report on 3D Remote Sensing in Forestry, “Process oriented Object-based 

Algorithms for Single Tree detection using Laser Scanning”. Center for GeoInformatics, Salzburg University, 

Austria. Retrieved from https://www.researchgate.net/publication/228851631_Process_oriented_object-

based_algorithms_for_single_tree_detection_using_laser_scanning  

 

Blaschke, T., Lang, S., & Hay, G. J (Editors). 2008. Object-Based Image Analysis: Spatial Concepts for Knowledge-

Driven Remote Sensing Applications. Springer-Verlag Berlin Heidelberg. Pp. 29-42. Retrieved from 

https://www.researchgate.net/publication/216266255_Object-based_Image_Analysis  

 

Khosravipour, A., Skidmore, A. K., Isenburg, M., Wang, T., & Hussin, Y. A. 2013. Development of an algorithm 

to generate a LiDAR pit-free Canopy Height Model. SliviLaser 2013. Beijing, China. Retrieved from 

http://www.riegl.com/uploads/tx_pxpriegldownloads/khosravipour_SilviLaser2013.pdf 

 

Trimble. 2014. Reference Book: eCognition Developer. Trimble Germany GmbH. Munich Germany. pp. 32-34 

http://www.forestry.denr.gov.ph/
http://www.isprs.org/proceedings/XXXVI/4-C42/Papers/01_Opening%20Session/OBIA2006_Hay_Castilla.pdf
https://arxiv.org/abs/1012.1193
http://www.ptfcf.org/
https://www.researchgate.net/publication/228851631_Process_oriented_object-based_algorithms_for_single_tree_detection_using_laser_scanning
https://www.researchgate.net/publication/228851631_Process_oriented_object-based_algorithms_for_single_tree_detection_using_laser_scanning
https://www.researchgate.net/publication/216266255_Object-based_Image_Analysis
http://www.riegl.com/uploads/tx_pxpriegldownloads/khosravipour_SilviLaser2013.pdf

