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ABSTRACT: This study examined the utilization of infrared bands (IR) from Himawari-8 Advanced Himawari 

Imager (AHI) for rainfall area detection in the Philippines. The parameters used include the IR brightness temperature 

(BT) at 10.4 microns (T10.4) and several IR BT differences (BTD), which were inferred as proxies for cloud properties 

such as cloud top height, cloud optical thickness, cloud water path, and cloud phase. These cloud properties were 

used to create a Probability of Rain (POR) look-up table (LUT) together with processed horizontal reflectivity radar 

data gathered on rainy periods of July to September 2015. Combinations of BTD’s for POR LUT construction 

includes the simple BTD’s, BTD’s based on cloud property, and selected BTD’s. Rain detection assessment using 

different skill scores showed an increased performance of POR LUT with selected BTD combinations compared to 

with simple BTD’s in training and testing stage. This is attributed to the increase in the sensitivity of detecting rain 

due to additional BTD. In visual comparison with Global Satellite Mapping of Precipitation (GSMaP) hourly rainfall 

maps, the POR LUT dominated by cloud-top height produced rain maps with high similarity. Prominent thin cirrus 

clouds and cold cloud dense overcast of the typhoons in testing stage were successfully classified as no-rain and rain, 

respectively. However, high false alarm rates were obtained when compared to radar data which means an over 

estimation of the method on rain detection. This is due to the weakness of weather radar on detecting rainfall in 

partially or fully blocked areas by mountains present in the domain, and the high variability of rain occurrences. The 

POR LUT using the selected BTD combinations dominated by cloud-top height is a viable method for satellite-based 

rainfall rate estimation due to its superiority to simple BTD combinations. 

 

1. INTRODUCTION 

 

Precipitation is defined as the water released from clouds in the form of rain, freezing rain, sleet, snow, or hail. It is 

one of the major processes in Earth’s water and energy cycle in which it delivers atmospheric water to the Earth 

surface. In the tropical region, most precipitation falls as rain. Philippines, located inside the tropical region, 

experiences rainfall events caused by low pressure systems like tropical cyclones, monsoon rains, localized 

thunderstorms, mesoscale convective storms, and Inter-tropical convergence zone. These weather processes 

contributed to the mean annual rainfall amount varying from 965 to 4,054 millimeters (PAGASA, 2015).  

 

The most destructive effects of extreme rain events are torrential rainfall amounts, severe floods and landslides within 

a short period of consecutive days. An example is during Typhoon Ketsana which instigated flash floods over 

Metropolitan Manila and neighbouring provinces on September 24 - 27, 2009. Another is the Southwest monsoon or 

Habagat rain episodes on August 2012 and 2013 which also brought heavy rainfall causing floods over the same 

areas. The recorded rainfall amounts from Habagat rain episodes rapidly exceeded the normal rainfall value in 

August. 

 

The impacts of extreme rainfall events can be minimized with the use of observations from remote sensing satellites. 

Satellites provide timely monitoring and continuous spatial coverage of cloud patterns, thus, can be used for rainfall 

detection. Known methods in remote sensing utilizing different bands in electromagnetic (EM) spectrum for 

precipitation detection and measurement is composed of visible (VIS), near-infrared (NIR), IR, passive microwave 

(PM), and combination of these bands. Among these, PM rain data are found to be directly related to rain rate 

(Anagnostou, 2004). Nevertheless, PM sensors, which are commonly aboard polar-orbiting satellites, is limited with 

coarse spatial resolutions of data, and narrow coverage. These attributes are opposite to VIS, NIR and IR techniques. 

VIS, NIR and IR sensors, aboard geostationary satellites, can detect precipitation rates with time intervals of minutes 

to hours, with high spatial resolution from four kilometers to one kilometer, and with wide spatial domain. Though 

VIS, NIR and IR measurements are poorly related to precipitation (Kidd & Levizzani, 2011), it can be related to 

cloud-top texture, optical-cloud thickness, and effective particle radius (Kuhnlein et al., 2010). These are cloud 



properties which can be associated with rainfall rate. The detection of IR EM waves on both night-time and daytime 

provides a consistent data source for continuous real-time rain monitoring. 

 

1.1 Application of Himawari - 8 AHI 

 

The new geostationary satellite of Japan known as Himawari-8, with its sensor Advanced Himawari Imager (AHI), 

offers better spatial and temporal resolution and more spectral bands compared to its predecessor, the Multi-functional 

Transport Satellite (MTSAT).  AHI can observe Earth’s atmosphere using 16 bands, specifically: 3 VIS bands, 3 NIR 

bands, and 10 IR bands (Bessho et al., 2016). From MTSAT previous four kilometers grid resolution, a finer 

resolution of 0.5 to one kilometers and two kilometers for VIS/NIR and IR bands, respectively can now be measured 

by AHI. Furthermore, a temporal resolution of ten minutes provides real time monitoring of rainfall and cloud 

activities. The AHI spectral bands especially the IR channel are currently untapped for rainfall estimation researches. 

This study seeks to use AHI’s IR channel BTs and BTDs for rain detection within the Philippines. 

 

Based on several related studies summarized in Table 1, IR BTD’s can be a proxy of cloud properties. These cloud 

properties include cloud-top height, cloud optical thickness, cloud phase, and cloud water path. The wide range of IR 

bands present in AHI led to the formulation of this study which examines the capability of Himawari-8 AHI IR BTD 

for rainfall detection. Specifically, this study aims to develop POR LUT using IR BTD from AHI with reflectivity 

data of Tagaytay radar in the Philippines. It also aims to determine the best combination of IR BTD’s as component 

of POR LUT by assessing its performance in the training and testing stage. 

 

Table 1. Related studies of the IR BTD inferred as a proxy of cloud property. 

Cloud property BTD AHI IR BTD  Studies 

Cloud-top 

height 

 

T6.2 – 10.8 T6.2 – 10.4 Kurino, 1997; Lutz et al., 2003 

T6.2 – 7.3 T6.2 – 7.3 Santurette & Georgiev, 2007 

T13.4 – 10.8 T13.3 – 10.4 Mecikalski et al., 2007; Mecikalski & Bedka, 2006 

T9.7 – 13.4 T9.6 – 13.3 Kwon et al., 2010 

Cloud optical 

thickness 

T10.8 – 12.1 T10.4 – 12.3 Inoue, 1985, 1987, & 2001; Thies et al., 2008a & 2008b 

T8.7 – 12.1 T8.6 – 12.3 Krebs et al., 2007, Strabala et al., 1994 

Cloud phase  T8.7 – 10.8 T8.6 – 10.4 Thies et al., 2008a & 2008b; Baum & Platnick, 2006 

Cloud water 

path  

T3.9 – 10.8 T3.9 – 10.4 Lensky & Rosenfeld, 2003a; Thies et al., 2008a 

T3.9 – 7.3 T3.9 – 7.3 Thies et al., 2008a 

 

2. METHODOLOGY 

 

Derived IR BTD from AHI and reflectivity data from radar were pre-processed and were used as an input to the 

development of POR LUT. Different BTD combinations in this process were utilized, thus, creating different LUT’s. 

These POR LUT’s were used to produce POR maps, and rainfall maps in training and testing stage. In the training 

stage, the optimum POR threshold were determined and assessed to classify rain from no-rain. Furthermore, these 

thresholds found were assessed in the testing stage. A qualitative comparison of the resulting rainfall maps with 

another satellite rainfall data known as GSMaP hourly rainfall data was done to visually assess the output maps within 

the domain of the Philippines. 

 

2.1 Data and Area of Study 

 

The data used in this study includes the IR BTD from Himawari-8 AHI (Table 1), the constant altitude plan-position 

indicator (CAPPI) product at 3km altitude of horizontal reflectivity from Tagaytay C-band radar, and the GSMaP 

rainfall rate product. These collected datasets extend from months of July to December 2015. The region of interest 

is within Tagaytay radar coverage of the Philippines, encompassing a circular area with 120 km radius from 

coordinates 14.123 °N 120. 974 °E (Figure 1). 

 



 

 
Figure 1. The region of interest. 

 

Training and Testing datasets:   The datasets in the study were grouped separately based on its purpose such as 

training and testing stages. The training datasets, which were used in creating POR LUT, covers the rainy periods on 

July to September 2015. In this period, typhoons, thunderstorms and Southwest monsoon rains occur in the 

Philippines. The testing dataset, on the other hand, are gathered from selected dates of rain events caused by typhoon 

occurrences within the temporal coverage of the study. Specifically, the testing dataset consists of occurrences of 

tropical cyclones on year 2015 named as Mujigae from October 1 – 4, Koppu from October 18 - 19, and Melor from 

December 14 – 17.  

 

2.2 Probability of Rain (POR) LUT 

 

POR is defined as the percentage value of rain event frequency over the total number of events. The equation is 

presented as: 

 

POR(x1,…, xn)= 
Nrain(x1,…, xn)

Nrain(x1,…, xn)+ Nno-rain(x1,…, xn)
 

(1) 

 

Where (x1,…, xn) are the combination of BTD, and  Nrain(x1,…, xn) and  Nno-rain(x1,…, xn) are the number of pixels 

with rain and with no –rain denoted by (x1,…, xn) respectively. 

 

Computation of POR was done through temporal matching of BTD maps with the reflectivity maps. The radar 

reflectivity data identifies and assigns rain pixels to the spatially equivalent BTD pixels. The rain pixels with BTD 

values, will be grouped depending on the pre-determined range bin of each BTD, thus produces a distribution of 

frequency of rain events. The process is also the same with non-raining pixels. These matrices are combined together 

using Equation 1 to form a POR distribution as a function of BTD combinations. By setting the threshold in POR 

distribution, the LUT can be used on satellite input images to derive a binary map classifying rain from no-rain areas. 

 

2.3 Experimental Design 

 

BTD combinations, used for POR LUT creation, are grouped into three: simple BTD combinations, combinations 

based on cloud property, and selected BTD combinations (Table2). The simple BTD combinations are consists of 

individual BTD along with BT at T10.4. The selected BTD combinations were based on the individual performance of 

simple BTD combinations found in this study. Each BTD combinations produced an LUT which in turn can be 

utilized to create maps with rain and no-rain areas.  

 

 



Table 2. Selected BTD combinations used in creation of POR LUT 

Group Label BTD combinations 

Simple BTD 

combinations 

CTH1 T6.2 - 10.4 & T10.4 

CTH2 T6.2 – 7.3 & T10.4 

CTH3 T13.3- 10.4 & T10.4 

CTH4 T9.6-13.3 & T10.4 

COT1 T10.4-12.3 & T10.4 

COT2 T8.6-12.3 & T10.4 

CP T8.6-10.4 & T10.4 

Combinations based 

on cloud property 

CWP T3.9-10.4 & T10.4 

CWP T3.9-7.3 & T10.4 

CTH All CTH & T10.4 

COT All COT & T10.4 

CWP All CWP & T10.4 

Selected BTD 

combinations 

BTD1 All CTH & T10.4 

BTD2 CTH3, CWP2, COT1, & T10.4 

BTD3 CTH3, CWP2, CP, & T10.4 

BTD4 COT1, CWP2, CP, & T10.4 

BTD_all All  BTD & T10.4 

 

2.4 Skill Scores 

 

Different statistical skill scores were used in the study to determine the overall performance of the methods used for 

classifying rain from no-rain areas in both training and testing stage (Feidas, & Giannakos, 2010). These scores were 

based on the contingency table indicated on Table 3. Hits and Zeros are both correctly identified rain and no-rain 

events respectively while False Alarms and Misses are not. The different skill scores were listed in Table 4. 

 

Table 3. Contingency table. 

Forecasted or 

Estimated 

Observed 

Rain   No-rain  

Rain  Hits (A) False Alarms (B) 

No-rain  Misses (C) Zeros (D) 

 

Table 4. Different Skill Scores used in the study. 

Skill Scores Equations  

Probability of 

Detection 
POD = 

A

A + B
 

(2) 

False Alarm Ratio 
FAR = 

B

A + B
 

(3) 

Probability of False 

Detection 
POFD = 

B

B + D
 

(4) 

Critical Success Index 
CSI = 

A

A + B + C
 

(5) 

Equitable Threat Score 
ETS = 

(A x D) - (B x C)

(B + C)N + ((A x D) - (B x C))
 

(6) 

Hanssen and Kuipers 

score HK= 
(A x D) - (B x C)

(B + D)(A + C)
 

(7) 

Relative Operating 

Characteristic (ROC) 

Distance  

distance(T1,…, Tn) = √(POFD - POFD(T1,…, Tn))
2
 +(POD - POD(T1,  …, Tn))

2
 

(8) 

 

Normalized Skill Score (NSS): NSS determines the POR threshold based on the optimal combination of score values 

derived from CSI, ETS, HK, and ROC distance (Equation 9). This score was used only on the training stage. The 

NSS equation is shown below: 

 

NSS(T1, …,T
n
)=

1

4
(

CSI(T1, …,T
n
)

CSImax

+ 
ETS(T1, …,T

n
)

ETSmax

+ 
HK(T1, …,T

n
)

HKmax

+ 
1-distance(T1, …,T

n
)

1-distancemin

) 
(9) 



In the above equation, the (T1, …, T
n
) are the varying POR threshold values, and the max and min denotes the 

maximum and minimum score of the indicated skill score, respectively. NSS values range from 0 to 1. NSS value of 

1 denotes that all four skill scores agree in a single threshold value. 

 

3. RESULTS 

 

3.1 POR Threshold 

 

In the training stage, POR threshold were determined in order to assess the performance of POR LUT in 

discriminating rain from no-rain areas. The 17 constructed POR LUT has its own optimum threshold based on skill 

scores. Figure 2 shows the variation of NSS, CSI, ETS, HK, & ROC distance in increasing POR threshold values in 

BTD_all. The threshold value were found to be in 0.32 with maximum NSS. 

 

 
Figure 2. Variation of NSS, CSI, ETS, HK, & ROC distance with increasing POR threshold.  

 

3.2 Training Stage 

 

The resulting skill scores in training stage are shown in Figures 3, and 4. Among all BTD combinations, the CTH3 

has the highest CSI, HK, ETS, and POD. The simple BTD combinations, except CTH3, does not perform well. On 

the other hand, the BTD combinations based on cloud property, except CTH, inherits the poor performance from its 

components thus resulting with low score on CSI, HK, ETS, and POD. The selected BTD combinations and CTH 

perform well in all scores with low POFD, which is a good characteristic compared to CTH3 with high false alarm 

rates. CTH scores is almost the same to BTD1 due to its similarity of BTD components. 

 

 
Figure 3. CSI, HK, and ETS scores of POR LUT outputs in training stage using different BTD combinations. 



 
Figure 4. POD, FAR, and POFD scores of POR LUT outputs in training stage using different BTD combinations. 

 

3.3 Testing Stage 

 

The skill score results based on the POR BTD combinations for testing stage are shown in Figures 5 and 6. Almost 

similar general patterns on BTD combinations can be found from the results of training stage except on decreased 

CSI and ETS, and increased FAR and POFD. CTH3 and CTH4 does not perform consistently compared with the 

output in training stage. Notable increase in POD of CTH, BTD1, and BTD_all can be seen at the expense of increased 

POFD and FAR. 

 

 
Figure 5. CSI, HK, and ETS scores of POR LUT outputs in testing stage using different BTD combinations. 

 

 
Figure 6. POD, FAR, and POFD scores of POR LUT outputs in testing stage using different BTD combinations. 

 

3.4 Comparison with GSMaP MVK Rainfall Rate Product 

 

Qualitative analysis was done through comparison of Himawari-8 T10.4 image, and GSMaP MVK hourly rainfall 

product with the rain and no-rain map outputs of POR LUT. The selected BTD combinations were chosen due to its 

consistency and relatively good performance based on the skill scores found on testing and training stage. The 

qualitative comparison is shown in Figures 7, 8, and 9 depicting Typhoon Mujigae, Koppu and Melor, respectively.  

 

Strong similarities were seen from the rainfall areas in GSMaP data and rain maps. However, BTD2, BTD3, and 

BTD4 showed a noisy behaviour outside and inside the regions of rainfall area depicted in GSMaP. Here, cirrus 



clouds at Himawari T10.4 images were misclassified as rains located outside the cloud dense of typhoons. Meanwhile, 

BTD_all, CTH, and BTD1 displays a satisfactory result among selected BTD combinations compared to GSMaP. In 

contrast with BTD2, BTD3, and BTD4, cirrus clouds are correctly classified as no rain by the BTD_all, CTH, and 

BTD1. 

 

 
Figure 7. Comparison of GSMaP rainfall product to POR LUT output maps during Typhoon Mujigae on 2015-10-

01 01:00 UTC. 

 

 
Figure 8. Comparison of GSMaP rainfall product to POR LUT output maps during Typhoon Koppu 2015-10-17 

01:00 UTC. 



 
Figure 9. Comparison of GSMaP rainfall product to POR LUT output maps during Typhoon Melor 2015-12-14 

01:00 UTC 

 

4. DISCUSSIONS AND CONCLUSIONS 

 

The application of Himawari-8 AHI IR bands for rainfall detection was examined. POR LUT method was used to 

derive rainfall maps from IR BTD. Several BTD combinations were used to construct POR LUT that includes simple 

combinations, combinations based on cloud property, and selected combinations. The rainfall outputs were compared 

with radar images using different skill scores and with GSMaP through qualitative analysis. 

 

Results showed an increased performance on POR model with many BTD components in detection of rain and no-

rain on training and testing stage compared to with few BTD. Increased POD, and decreased FAR and POFD were 

observed in selected BTD combinations. These behaviours can be attributed to the equation of POR which depends 

on the frequency of rain and no-rain events in the training dataset. However, over-estimation denoted by FAR score 

still persists. This can be caused by the limitation of radar data to detect rain in partially or fully blocked areas such 

as behind mountains existing on the radar domain which is in contrast, detected by POR method as rain. Also, number 

of false alarms of rain clouds on the method used is expected to happen due to high variability of rain occurrences. 

Though the POR LUT method on selected BTD combinations suffers consistent false alarms of rain, it is still superior 

to simple BTD combinations. 

 

Rainfall map outputs from Selected BTD combinations were assessed through qualitative analysis with GSMaP data.  

CTH, BTD1 and BTD_all showed promising similarities with GSMaP data. Distinguishable thin cirrus clouds are 

tagged as no-rain in contrast with thicker and high clouds. The said BTD’s are dominated by cloud-top height property 

which is directly related to the level of convection as seen in cold cloud dense overcast of Typhoons in Himawari-8 

T10.4 images (Figures 7 to 9). The effect of missing cloud-top height component of POR LUT was prominent in BTD4 

rain images in which false classification occurs in regions far away from the typhoons. Cloud-top height is therefore 

the key component among BTD’s used in POR model but other BTD’s are important to minimize false alarms of rain 

events. 

 

This study provides insights on application of AHI IR BTD in rainfall detection through LUT. The POR LUT can 

maximize the satellite images through emphasizing areas with important information like classification of rain and 

no-rain areas on Typhoon cases. The method can be used as initial step for satellite-based rainfall rate estimation. 

However, this study still needs of further investigation on different cases like rain caused by thunderstorms and other 

low pressure systems. 
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